Skip to main content

Continuum Microviscoelasticity Model for Cementitious Materials: Upscaling Technique and First Experimental Validation

  • Conference paper
Nanotechnology in Construction 3
  • 6139 Accesses

Abstract

We propose a micromechanics model for aging basic creep of early-age concrete. Therefore, we formulate viscoelastic boundary value problems on two representative volume elements (RVEs), one related to cement paste (composed of cement, water, hydrates, air), and one related to concrete (composed of cement paste and aggregates). Homogenization of the non-aging elastic and viscoelastic properties of the material’s constituents involves the transformation of the aforementioned viscoelastic boundary value problems to the Laplace-Carson (LC) domain. There, formally elastic, classical self-consistent and Mori-Tanaka solutions are employed, leading to pointwisely defined LC-transformed tensorial creep and relaxation functions. Subsequently, the latter are backtransformed, by means of the Gaver-Wynn-Rho algorithm, into the time domain. Temporal derivatives of corresponding homogenized creep tensors, evaluated for the current maturation state of the material and for the current time period since loading of the hydrating composite material, allow for micromechanical prediction of the aging basic creep properties of early-age concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate, J., Valkó, P.P.: Multi-precision Laplace transform inversion. Int. J. Numer. Meth. Eng. 60, 979–993 (2004)

    Article  MATH  Google Scholar 

  2. Acker, P.: Micromechanical analysis of creep and shrinkage mechanisms. In: Ulm, F.-J., Bažant, Z.P., Wittmann, F.H. (eds.) Concreep 6: Creep, Shrinkage and Durability of Concrete and Concrete Structures, Cambridge, USA, pp. 15–25. Elsevier Science Ltd., Amsterdam (2001)

    Google Scholar 

  3. Atrushi, D.: Tensile and Compressive Creep of Early-Age Concrete: Testing and Modelling. PhD thesis, Norwegian University of Science and Technology, Trondheim, Norway (2003)

    Google Scholar 

  4. Bernard, O., Ulm, F.-J., Germaine, J.T.: Volume and deviator creep of calcium-leached cement-based materials. Cement Concrete Res. 33, 1127–1136 (2003)

    Article  CAS  Google Scholar 

  5. Bernard, O., Ulm, F.-J., Lemarchand, E.: A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials. Cement Concrete Res. 33, 1293–1309 (2003)

    Article  CAS  Google Scholar 

  6. Burgers, J.M.: First report on viscosity and plasticity. Report, Amsterdam (1935)

    Google Scholar 

  7. Dormieux, L.: Applied Micromechanics of Porous Media. CISM Courses and Lectures, vol. 480. Springer, Wien (2005)

    Book  Google Scholar 

  8. Hellmich, C.: Microelasticity of Bone. In: [7], ch. 8, pp. 289–331. Springer, Wien (2005)

    Google Scholar 

  9. Hellmich, C., Mang, H.A.: Shotcrete elasticity revisited in the framework of continuum micromechanics: from submicron to meter level. J. Mater. Civil Eng-ASCE 17, 246–256 (2005)

    Article  CAS  Google Scholar 

  10. Hill, R.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13(2), 89–101 (1965)

    Article  MATH  ADS  CAS  Google Scholar 

  11. Hua, C., Ehrlacher, A., Acker, P.: Analyses and models of the autogeneous shrinkage of hardening cement paste – II. Modelling at scale of hydrating grains. Cement Concrete Res. 27(2), 245–258 (1997)

    Article  CAS  Google Scholar 

  12. Laplante, P.: Propriétés mécaniques de bétons durcissants: analyse comparée des bétons classique et à trés hautes performances [Mechanical properties of hardening concrete: a comparative analysis of ordinary and high performance concretes]. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, France (1993) (in French)

    Google Scholar 

  13. Laws, N., McLaughlin, R.: Self-consistent estimates for the viscoelastic creep compliances of composite materials. P. Roy. Soc. A-Math Phy. 359, 251–273 (1978)

    Article  CAS  MathSciNet  Google Scholar 

  14. Scheiner, S., Hellmich, C.: Continuum microviscoelasticity model for aging basic creep of early-age concrete. J. Eng. Mech-ASCE (accepted for publication) (2008)

    Google Scholar 

  15. Thomas, J.J., Jennings, H.M., Allen, A.J.: The surface area of cement paste as measured by neutron scattering: evidence for two C-S-H morphologies. Cement Concrete Res. 28(6), 897–905 (1998)

    Article  CAS  Google Scholar 

  16. Zaoui, A.: Continuum micromechanics: survey. J. Eng. Mech-ASCE 128(8), 808–816 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scheiner, S., Hellmich, C. (2009). Continuum Microviscoelasticity Model for Cementitious Materials: Upscaling Technique and First Experimental Validation. In: Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J. (eds) Nanotechnology in Construction 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_10

Download citation

Publish with us

Policies and ethics