Skip to main content

Potential Environmental and Human Health Impacts of Nanomaterials Used in the Construction Industry

  • Conference paper

Abstract

Nanomaterials and nanocomposites with unique physical and chemical properties are increasingly being used by the construction industry to enable novel applications. Yet, we are confronted with the timely concern about their potential (unintended) impacts to the environment and human health. Here, we consider likely environmental release and exposure scenarios for nanomaterials that are often incorporated into building materials and/or used in various applications by the construction industry, such as carbon nanotubes, TiO2, and quantum dots. To provide a risk perspective, adverse biological and toxicological effects associated with these nanomaterials are also reviewed along with their mode of action. Aligned with ongoing multidisciplinary action on risk assessment of nanomaterials in the environment, this article concludes by discerning critical knowledge gaps and research needs to inform the responsible manufacturing, use and disposal of nanoparticles in construction materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, L.K., Lyon, D.Y., Alvarez, P.J.J.: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Wat. Res. 40(19), 3527–3532 (2006)

    Article  CAS  Google Scholar 

  2. ARI-News. Nanotechnology in Construction - One of the top ten answers to world’s biggest problems, May 3 (2005)

    Google Scholar 

  3. Attik, G., Brown, R., Jackson, P., Creutzenberg, O., Aboukhamis, I., Rihn, B.H.: Internalization, Cytotoxicity, Apoptosis, and Tumor Necrosis Factor-alpha Expression in Rat Alveolar Macrophages Exposed to Various Dusts Occurring in the Ceramics Industry. Inhal. Toxicol. 20(12), 1101–1112 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Blaise, C., Gagne, F., Ferard, J.F., Eullaffroy, P.: Ecotoxicity of selected nano-materials to aquatic organisms. Environ. Toxicol. 23(5), 591–598 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Brown, P., Kamat, P.V.: Quantum dot solar cells. Electrophoretic deposition of CdSe-C60 composite films and capture of photogenerated electrons with nC60 cluster shell. J. Amer. Chem. Soc. 130(28), 8890–8891 (2008)

    Article  CAS  Google Scholar 

  6. Carson, R.: Silent Spring. Hamilton, London (1963)

    Google Scholar 

  7. Cha, E.K., Myung, H.: Cytotoxic effects of nanoparticles assessed in vitro and in vivo. J. Microbiol. Biotechnol. 17(9), 1573–1578 (2007)

    CAS  PubMed  Google Scholar 

  8. Chan, W.C.W., Maxwell, D.J., Gao, X.H., Bailey, R.E., Han, M.Y., Nie, S.M.: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Chang, E., Thekkek, N., Yu, W.W., Colvin, V.L., Drezek, R.: Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2(12), 1412–1417 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Chen, K.L., Elimelech, M.: Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22(26), 10994–11001 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Z., Meng, H.A., Xing, G.M., Chen, C.Y., Zhao, Y.L., Jia, G.A., Wang, T.C., Yuan, H., Ye, C., Zhao, F., Chai, Z.F., Zhu, C.F., Fang, X.H., Ma, B.C., Wan, L.J.: Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 163(2), 109–120 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. Colvin, V.L.: The potential environmental impact of engineered nanomaterials. Nature Biotechnol. 21(10), 1166–1170 (2003)

    Article  CAS  Google Scholar 

  13. Daniel, M.C., Astruc, D.: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104(1), 293–346 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. de Ibarra, Y.S., Gaitero, J.J., Erkizia, E., Campillo, I.: Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys. Stat. Sol. A - Appl. Mater. Sci. 203(6), 1076–1081 (2006)

    ADS  Google Scholar 

  15. Derfus, A.M., Chan, W.C.W., Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4(1), 11–18 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Ding, L.H., Stilwell, J., Zhang, T.T., Elboudwarej, O., Jiang, H.J., Selegue, J.P., Cooke, P.A., Gray, J.W., Chen, F.Q.F.: Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett. 5(12), 2448–2464 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Fang, J., Lyon, D.Y., Wiesner, M.R., Dong, J., Alvarez, P.J.J.: Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ. Sci. Technol. 41(7), 2636–2642 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Fortner, J.D., Lyon, D.Y., Sayes, C.M., Boyd, A.M., Falkner, J.C., Hotze, E.M., Alemany, L.B., Tao, Y.J., Guo, W., Ausman, K.D., Colvin, V.L., Hughes, J.B.: C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 39(11), 4307–4316 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. Ge, Z., Gao, Z.: Applications of nanotechnology and nanomaterials in construction. In: First Inter. Confer. Construc. Develop. Countries, pp. 235–240 (2008)

    Google Scholar 

  20. Girishkumar, G., Rettker, M., Underhile, R., Binz, D., Vinodgopal, K., McGinn, P., Kamat, P.: Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21(18), 8487–8494 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Griffitt, R.J., Weil, R., Hyndman, K.A., Denslow, N.D., Powers, K., Taylor, D., Barber, D.S.: Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 41, 8178–8186 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Handy, R.D., Henry, T.B., Scown, T.M., Johnston, B.D., Tyler, C.R.: Manufactured nanoparticles: their uptake and effects on fish-a mechanistic analysis. Ecotoxicol. 17(5), 396–409 (2008)

    Article  CAS  Google Scholar 

  23. Hardman, R.: A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect 114(2), 165–172 (2006)

    Article  PubMed  Google Scholar 

  24. Heymann, D.: Solubility of C60 and C70 in seven normal alcohols and their deduced solubility in water. Fuller. Sci. Technol. 4, 509–515 (1994)

    ADS  Google Scholar 

  25. Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y.F., Ohta, T., Yasuhara, M., Suzuki, K., Yamamoto, K.: Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4(11), 2163–2169 (2004)

    Article  CAS  ADS  Google Scholar 

  26. Hotze, E.M., Labille, J., Alvarez, P.J.J., Wiesner, M.R.: Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Environ. Sci. Technol. 42, 4175–4180 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. IARC, Silica, some silicates, coal dust and para-aramid fibrils. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 68, 41 (1997)

    Google Scholar 

  28. Irie, H., Sunada, K., Hashimoto, K.: Recent developments in TiO2 photocatalysis: Novel applications to interior ecology materials and energy saving systems. Electrochem. 72(12), 807–812 (2004)

    CAS  Google Scholar 

  29. Isakovic, A., Markovic, Z., Todorovic-Markovic, B., Nikolic, N., Vranjes-Djuric, S., Mirkovic, M., Dramicanin, M., Harhaji, L., Raicevic, N., Nikolic, Z., Trajkovic, V.: Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol. Sci. 91(1), 173–183 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Jia, G., Wang, H.F., Yan, L., Wang, X., Pei, R.J., Yan, T., Zhao, Y.L., Guo, X.B.: Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39(5), 1378–1383 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Kanarek, S., Powell, C.: Nanotechnology health risk assessment. Epidemiol. 17(6), S443–S443 (2006)

    Article  Google Scholar 

  32. Kandlikar, M., Ramachandran, G., Maynard, A., Murdock, B., Toscano, W.A.: Health risk assessment for nanoparticles: A case for using expert judgment. J. Nanopart. Res. 9(1), 137–156 (2007)

    Article  Google Scholar 

  33. Kang, S., Pinault, M., Pfefferle, L.D., Elimelech, M.: Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17), 8670–8673 (2007)

    Article  CAS  PubMed  Google Scholar 

  34. Karlsson, H.L., Cronholm, P., Gustafsson, J., Moller, L.: Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21(9), 1726–1732 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Kartam, N., Al-Mutairi, N., Al-Ghusain, I., Al-Humoud, J.: Environmental management of construction and demolition waste in Kuwait. Waste Management 24(10), 1049–1059 (2004)

    Article  PubMed  Google Scholar 

  36. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Javier, A.M., Gaub, H.E., Stolzle, S., Fertig, N., Parak, W.J.: Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 5(2), 331–338 (2005)

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. Kloepfer, J.A., Mielke, R.E., Nadeau, J.L.: Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl. Environ. Microbiol. 71(5), 2548–2557 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Kontos, A.I., Kontos, A.G., Tsoukleris, D.S., Vlachos, G.D., Falaras, P.: Superhydrophilicity and photocatalytic property of nanocrystalline titania sol-gel films. Thin Sol. Films 515(18), 7370–7375 (2007)

    Article  ADS  CAS  Google Scholar 

  40. Kourmpanis, B., Papadopoulos, A., Moustakas, K., Stylianou, M., Haralambous, K.J., Loizidou, M.: Preliminary study for the management of construction and demolition waste. Waste Management Res. 26(3), 267–275 (2008)

    Article  CAS  Google Scholar 

  41. Kumar, A., Vemula, P.K., Ajayan, P.M., John, G.: Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nature Mater. 7(3), 236–241 (2008)

    Article  ADS  CAS  Google Scholar 

  42. Lam, C.W., James, J.T., McCluskey, R., Arepalli, S., Hunter, R.L.: A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Critical Rev. Toxicol. 36(3), 189–217 (2006)

    Article  CAS  Google Scholar 

  43. Lee, H.A., Imran, M., Monteiro-Riviere, N.A., Colvin, V.L., Yu, W.W., Riviere, J.E.: Biodistribution of quantum dot nanoparticles in perfused skin: Evidence of coating dependency and periodicity in arterial extraction. Nano Lett. 7(9), 2865–2870 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Lee, J., Fortner, J.D., Hughes, J.B., Kim, J.-H.: Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Environ. Sci. Technol. 41, 2529–2535 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Lee, W.M., An, Y.J., Yoon, H., Kweon, H.S.: Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 27(9), 1915–1921 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. Li, D., Lyon, D.Y., Li, Q., Alvarez, P.J.J.: Effect of natural organic matter on the antibacterial activity of a fullerene water suspension. Environ. Toxicol. Chem. 27(9), 1888–1894 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. Li, G.Y.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement Concrete Res. 34(6), 1043–1049 (2004)

    Article  CAS  Google Scholar 

  48. Li, H., Xiao, H.G., Yuan, J., Ou, J.P.: Microstructure of cement mortar with nano-particles. Composites Part B-Engineering 35(2), 185–189 (2004)

    Article  CAS  Google Scholar 

  49. Lin, P., Chen, J.-W., Chang, L.W., Wu, J.-P., Redding, L., Chang, H., Yeh, T.-K., Yang, C.-S., Tsai, M.-H., Wang, H.-J., Kuo, Y.-C., Yang, R.S.H.: Computational and ultrastructural toxicology of a nanoparticle, quantum Dot 705, in mice. Environ. Sci. Technol. 42(16), 6264–6270 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V., Veronesi, B.: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40(14), 4346–4352 (2006)

    Article  CAS  PubMed  Google Scholar 

  51. Lovric, J., Cho, S.J., Winnik, F.M., Maysinger, D.: Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 12(11), 1227–1234 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. Lu, Z.S., Li, C.M., Bao, H.F., Qiao, Y., Toh, Y.H., Yang, X.: Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24(10), 5445–5452 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. Lyon, D.Y., Adams, L.K., Falkner, J.C., Alvarez, P.J.J.: Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 40(14), 4360–4366 (2006)

    Article  CAS  PubMed  Google Scholar 

  54. Lyon, D.Y., Alvarez, P.J.J.: How a fullerene water suspension kills bacteria: Exploring three possible mechanisms. Chem. Res. Toxicol. 20(12), 1991 (2007)

    Google Scholar 

  55. Lyon, D.Y., Brunet, L., Hinkal, G.W., Wiesner, M.R., Alvarez, P.J.J.: Antibacterial activity of fullerene water suspensions nC60 is not due to ROS-mediated damage. Nano Lett. 8(5), 1539–1543 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Lyon, D.Y., Fortner, J.D., Sayes, C.M., Colvin, V.L., Hughes, J.B.: Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ. Toxicol. Chem. 24(11), 2757–2762 (2005)

    Article  CAS  PubMed  Google Scholar 

  57. Mahendra, S., Zhu, H., Colvin, V.L., Alvarez, P.J.J.: Quantum Dot Weathering Results in Microbial Toxicity. Environ. Sci. Technol. 42(24), 9424–9430 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. Mann, S.: Nanotechnology and construction. Nanoforum Report, May 30 (2006)

    Google Scholar 

  59. Narayan, R.J., Berry, C.J., Brigmon, R.L.: Structural and biological properties of carbon nanotube composite films. Mater. Sci. Eng. B. 123, 123–129 (2005)

    Article  CAS  Google Scholar 

  60. O’Brien, N., Cummins, E.: Recent developments in nanotechnology and risk assessment strategies for addressing public and environmental health concerns. Hum. Ecol. Risk Assess. 14(3), 568–592 (2008)

    Article  CAS  Google Scholar 

  61. Oberdörster, E.: Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112(10), 1058–1062 (2004)

    Article  PubMed  Google Scholar 

  62. Oberdorster, G., Gelein, R., Ferin, J., Weiss, B.: Association of particulate air-pollution and acute mortality - Involvement of ultrafine particles. Inhal. Toxicol. 7(1), 111–124 (1995)

    Article  CAS  PubMed  Google Scholar 

  63. Park, S., Lee, Y.K., Jung, M., Kim, K.H., Chung, N., Ahn, E.K., Lim, Y., Lee, K.H.: Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal. Toxicol. 19, 59–65 (2007)

    Article  CAS  PubMed  Google Scholar 

  64. Paz, Y., Luo, Z., Rabenberg, L., Heller, A.: Photooxidative self-cleaning transparent titanium-dioxide films on glass. J. Mater. Res. 10(11), 2842–2848 (1995)

    Article  ADS  CAS  Google Scholar 

  65. Poon, C.S.: Management of construction and demolition waste. Waste Management 27(2), 159–160 (2007)

    Article  CAS  PubMed  Google Scholar 

  66. Reeves, J.F., Davies, S.J., Dodd, N.J.F., Jha, A.N.: Hydroxyl radicals are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res. -Fundam. Mol. Mech. Mutagen. 640(1-2), 113–122 (2008)

    Article  CAS  Google Scholar 

  67. Rincon, A., Pulgarin, C.: Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl. Catal. B: Environ. 49, 99–112 (2004)

    Article  CAS  Google Scholar 

  68. Rincon, A., Pulgarin, C.: Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 Implications in solar water disinfection. Appl. Catal. B: Environ. 51, 283–302 (2004)

    Article  CAS  Google Scholar 

  69. Ryman-Rasmussen, J.P., Riviere, J.E., Monteiro-Riviere, N.A.: Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J. Investig. Dermatol. 127(1), 143–153 (2007)

    Article  CAS  PubMed  Google Scholar 

  70. Saafi, M., Romine, P.: Nano- and microtechnology. Concrete Inter. 27, 28–34 (2005)

    CAS  Google Scholar 

  71. Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.C., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., Colvin, V.L.: The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4(10), 1881–1887 (2004)

    Article  CAS  ADS  Google Scholar 

  72. Sayes, C.M., Gobin, A.M., Ausman, K.D., Mendeza, J., West, J.L., Colvin, V.L.: Nano-C60 cytotoxicity is due to lipid peroxidation. Biomater. 26(36), 7587–7595 (2005)

    Article  CAS  Google Scholar 

  73. Sayes, C.M., Wahi, R., Kurian, P.A., Liu, Y.P., West, J.L., Ausman, K.D., Warheit, D.B., Colvin, V.L.: Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92(1), 174–185 (2006)

    Article  CAS  PubMed  Google Scholar 

  74. Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., Yamamoto, K.: On the cyto-toxicity caused by quantum dots. Microbiol. Immunol. 48(9), 669–675 (2004)

    CAS  PubMed  Google Scholar 

  75. Sobolev, K., Gutierrez, M.F.: How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 84, 16–20 (2005)

    CAS  Google Scholar 

  76. Song, G.B., Gu, H.C., Mo, Y.L.: Smart aggregates: multi-functional sensors for concrete structures - a tutorial and a review. Smart Mater. Struct. 17(3), 1–17 (2008)

    Article  MATH  Google Scholar 

  77. Spesia, M.B., Milanesio, M.E., Durantini, E.N.: Synthesis, properties and photodynamic inactivation of Escherichia coli by novel cationic fullerene C60 derivatives. Euro. J. Med. Chem. (2007)

    Google Scholar 

  78. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998)

    Article  ADS  CAS  Google Scholar 

  79. Tsao, N., Luh, T., Chou, C., Chang, T., Wu, J., Liu, C., Lei, H.: In vitro action of carboxyfullerene. J. Antimicro. Chemother. 49(4), 641–649 (2002)

    Article  CAS  Google Scholar 

  80. Turusov, V., Rakitsky, V., Tomatis, L.: Dichlorodiphenyltrichloroethane (DDT): Ubiquity, persistence, and risks. Environmental Health Perspectives 110(2), 125–128 (2002)

    Article  CAS  PubMed  Google Scholar 

  81. Voura, E.B., Jaiswal, J.K., Mattoussi, H., Simon, S.M.: Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Med. 10(9), 993–998 (2004)

    Article  CAS  PubMed  Google Scholar 

  82. Wei, W., Sethuraman, A., Jin, C., Monteiro-Riviere, N.A., Narayan, R.J.: Biological properties of carbon nanotubes. J. Nanosci. Nanotechnol. 7(4-5), 1284–1297 (2007)

    Article  CAS  PubMed  Google Scholar 

  83. Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D., Biswas, P.: Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40(14), 4336–4345 (2006)

    Article  CAS  PubMed  Google Scholar 

  84. Wolfrum, E.J., Huang, J., Blake, D.M., Maness, P.C., Huang, Z., Fiest, J., Jacoby, W.A.: Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfaces. Environ. Sci. Technol. 36(15), 3412–3419 (2002)

    Article  CAS  PubMed  Google Scholar 

  85. Yu, W.W., Chang, E., Falkner, J.C., Zhang, J.Y., Al-Somali, A.M., Sayes, C.M., Johns, J., Drezek, R., Colvin, V.L.: Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Amer. Chem. Soc. 129(10), 2871–2879 (2007)

    Article  CAS  Google Scholar 

  86. Zhang, Q.W., Kusaka, Y., Sato, K., Nakakuki, K., Kohyama, N., Donaldson, K.: Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: Role of free radicals. J. Toxicol. Environ. Health Part A.-Current Issues 53(6), 423–438 (1998)

    Article  CAS  Google Scholar 

  87. Zhang, W., Suhr, J., Koratkar, N.: Carbon nanotube/polycarbonate composites as multifunctional strain sensors. J. Nanosci. Nanotechnol. 6(4), 960–964 (2006)

    Article  CAS  PubMed  Google Scholar 

  88. Zhu, W., Bartos, P.J.M., Porro, A.: Application of nanotechnology in construction - Summary of a state-of-the-art report. Mater. Struct. 37(273), 649–658 (2004)

    Article  CAS  Google Scholar 

  89. Zhu, X.S., Zhu, L., Duan, Z.H., Qi, R.Q., Li, Y., Lang, Y.P.: Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health Part A.-Toxic/Hazardous Substances & Environ. Eng. 43(3), 278–284 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J., Mahendra, S., Alvarez, P.J.J. (2009). Potential Environmental and Human Health Impacts of Nanomaterials Used in the Construction Industry. In: Bittnar, Z., Bartos, P.J.M., Němeček, J., Šmilauer, V., Zeman, J. (eds) Nanotechnology in Construction 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_1

Download citation

Publish with us

Policies and ethics