PBS: Periodic Behavioral Spectrum of P2P Applications

  • Tom Z. J. Fu
  • Yan Hu
  • Xingang Shi
  • Dah Ming Chiu
  • John C. S. Lui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5448)


Due to the significant increase of peer-to-peer (P2P) traffic in the past few years, more attentions are put on designing effective methodologies of monitoring and identifying P2P traffic. In this paper, we propose a novel approach to measure and discover the special characteristics of P2P applications, the periodic behaviors, from the packet traces. We call this the “periodic behavioral spectrum” (PBS) of P2P applications. This new finding, learning the characteristics of P2P traffic from a new angle, could enhance our understanding on P2P applications. To show the effectiveness of our approach, we not only provide justifications as to why P2P applications should have some inherent periodic behaviors, but also conduct hundreds of experiments of applying the approach on several popular P2P applications.


Fast Fourier Transform Periodic Behavior Target Host Playback Rate Interval Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer multicast. In: Proc. ACM SIGCOMM 2002 (August 2002)Google Scholar
  4. 4.
    Chu, Y., Rao, S.G., Zhang, H.: A case for end system multicast. In: Proc. ACM Sigmetrics 2000 (2000)Google Scholar
  5. 5.
    Cohen, B.: Incentives build robustness in bittorrent (May 2003),
  6. 6.
    Francis, P.: Yoid: Extending the multicast internet architecture. White paper (1999)Google Scholar
  7. 7.
    Huang, Y., Fu, T.Z.J., Chiu, D.M., Lui, J.C.S., Huang, C.: Challenges, design and analysis of a large-scale p2p-vod system. In: Proc. ACM SIGCOMM 2008 (2008)Google Scholar
  8. 8.
    Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.: Transport layer identification of p2p traffic. In: Proc. IMC 2004 (2004)Google Scholar
  9. 9.
    Karagiannis, T., Papagiannaki, K., Faloutsos, M.: Blinc: Multilevel traffic classification in the dark. In: Proc. ACM SIGCOMM 2005 (2005)Google Scholar
  10. 10.
    Legout, A., Liogkas, N., Kohler, E.: Clustering and sharing incentives in bittorrent systems. In: Proc. ACM Sigmetrics 2007 (June 2007)Google Scholar
  11. 11.
    Moore, A.W., Zuev, D.: Internet traffic classification using bayesian analysis techniques. In: Proc. ACM Sigmetrics 2005 (2005)Google Scholar
  12. 12.
    Moore, A.W., Zuev, D., Crogan, M.: Discriminators for use in flow-based classification. Technical report, Intel Research, Cambridge (2005)Google Scholar
  13. 13.
    Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time signal processing, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  14. 14.
    Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of p2p traffic. In: Proc. WWW 2004 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tom Z. J. Fu
    • 1
  • Yan Hu
    • 1
  • Xingang Shi
    • 1
  • Dah Ming Chiu
    • 1
  • John C. S. Lui
    • 2
  1. 1.IE Dept.CUHKHong Kong
  2. 2.CSE Dept.CUHKHong Kong

Personalised recommendations