Towards Resilient Networks Using Programmable Networking Technologies

  • Linlin Xie
  • Paul Smith
  • Mark Banfield
  • Helmut Leopold
  • James P. G. Sterbenz
  • David Hutchison
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4388)

Abstract

Resilience is arguably the most important property of a networked system, one of the three quality of service (QoS) characteristics along with security and performance. Now that computer networks are supporting many of the applications crucial to the success of the emerging Information Society – including business, health care, education, science, and government – it is particularly important to ensure that the underlying network infrastructure is resilient to events and attacks that will inevitably occur. Included in these challenges are flash crowd events, in which servers cannot cope with a very large onset of valid traffic, and denial of service attacks which aim to damage networked system with malicious traffic. In this paper, we outline the case for mechanisms to deal with such events and attacks, and we propose programmable networking techniques as the best way ahead, illustrated by a flash crowd example.

Keywords

Resilience Survivability Disruption Tolerance Programmable and Active Networking Flash Crowd and Distributed Denial of Service (DDoS) Detection and Remediation Quality of Service (QoS) 

References

  1. 1.
    Niven, L.: Flash Crowd. In: Flight of the Horse. Ballantine Books (September 1973)Google Scholar
  2. 2.
    LeFebvre, W.: CNN.com: Facing A World Crisis (2001), http://www.tcsa.org/lisa2001/cnn.txt2001
  3. 3.
    Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash Crowds and Denial of Service Attacks: Characterization and Implications for CDNs and Web Sites. In: Proceedings of The Eleventh International ACM World Wide Web Conference (ACM WWW 2002), Hawaii, USA (May 2002)Google Scholar
  4. 4.
    Stading, T., Maniatis, P., Baker, M.: Peer-to-peer caching schemes to address flash crowds. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 203. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Patel, J.A., Gupta, I.: Overhaul: Extending HTTP to Combat Flash Crowds. In: Proceedings of the 9th International Workshop on Web Caching and Content Distribution (WCW 2004), Beijing, China (October 2004)Google Scholar
  6. 6.
    Chandra, A., Shenoy, P.: Effectiveness of Dynamic Resource Allocation for Handling Internet Flash Crowds, University of Massachusetts Technical Report, TR03-37 (2003)Google Scholar
  7. 7.
    Mahajan, R., Bellovin, S.M., Floyd, S., Ioannidis, J., Paxson, V., Shenker, S.: Controlling High Bandwidth Aggregates in the Network. In: ACM SIGCOMM Computer Communication Review, vol. 32(3), pp. 62–73 (July 2002)Google Scholar
  8. 8.
    Ioannidis, J., Bellovin, S.M.: Implementing Pushback: Router-Based Defense Against DDoS Attacks, AT&T Technical Report (December 2001)Google Scholar
  9. 9.
    Chen, X., Heidemann, J.: Flash Crowd Mitigation via Adaptive Admission Control Based on Application-Level Observation, USC/ISI Technical Report, ISI-TR-2002_557 (revised version) (March 2003)Google Scholar
  10. 10.
    Mirkovic, J., Reiher, P.: A Taxonomy of DDoS Attack and DDoS Defense Mechanisms. In: ACM SIGCOMM Computer Communications Review, vol. 34(2), pp. 39–53 (April 2004)Google Scholar
  11. 11.
    Crovella, M.E., Bestavros, A.: Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes. IEEE/ACM Transactions on Networking 5(6), 835–846 (1997)CrossRefGoogle Scholar
  12. 12.
    Fortz, B., Thorup, M.: Internet Traffic Engineering by Optimizing OSPF Weights. In: Proceedings of the 19th Conference on Computer Communications (INFOCOM 2000), Tel-Aviv, Israel (March 2000)Google Scholar
  13. 13.
    Bivio Networks, http://www.bivio.net/
  14. 14.
  15. 15.
    IBM Autonomic Computing, White Paper: An architectural blueprint for autonomic computing, 3rd edn. (June 2005), http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
  16. 16.
    Jackson, A.W., Sterbenz, J.P.G., Condell, M.N., Hain, R.R.: Active Network Monitoring and Control: The SENCOMM Architecture and Implementation. In: 2002 DARPA Active Networks Conference and Exposition (DANCE 2002), p. 379 (2002)Google Scholar
  17. 17.
    The Autonomic Communications Forum, http://www.autonomic-communication-forum.org/
  18. 18.
    The Autonomic Networking Architecture (ANA) research consortium, http://www.ana-project.org/
  19. 19.
    Clark, D., Partridge, C., Ramming, J., Wroclawksi, J.: A Knowledge Plane for the Internet. In: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM 2003), Karlsruhe, Germany (August 2003)Google Scholar
  20. 20.
    Katz, R., Porter, G., Shenker, S., Stoica, I., Tsai, M.: COPS: Quality of service vs. Any service at all. In: de Meer, H., Bhatti, N. (eds.) IWQoS 2005. LNCS, vol. 3552, pp. 3–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Lakhina, A., Crovella, M., Diot, C.: Diagnosing Network-wide Traffic anomalies. In: Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication (SIGCOMM 2004), Portland, Oregon, USA (August 2004)Google Scholar
  22. 22.
    Sterbenz, J.P.G., Krishnan, R., Hain, R.R., Jackson, A.W., Levin, D., Ramanathan, R., Zao, J.: Survivable Mobile Wireless Networks: Issues, Challenges, and Research Directions. In: Proceedings of the ACM Wireless Security Workshop (WiSE) 2002 at MobiCom, Atlanta, GA, September 2002, pp. 31–40 (2002)Google Scholar
  23. 23.
    Sterbenz, J.P.G., Hutchison, D.: Towards a Framework for Cross-Layer Optimisation in Support of Survivable and Resilient Autonomic Networking, Dagstuhl Seminar 06011 (January 2006)Google Scholar
  24. 24.
    Calvert, K., Bhatacharjee, S., Zegura, E., Sterbenz, J.P.G.: Directions in Active Networks. IEEE Communications 36(10), 72–78 (1998)CrossRefGoogle Scholar
  25. 25.
    Tennenhouse, D.L., Wetherall, D.J.: Towards an Active Network Architecture. ACM Computer Communication Review 26(2), 5–17 (1996)CrossRefGoogle Scholar
  26. 26.
    Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, D.J., Minden, G.J.: A Survey of Active Network Research. IEEE Communications Magazine 35(1), 80–86 (1997)CrossRefGoogle Scholar
  27. 27.
    Schmid, S.: A Component-based Active Router Architecture, PhD Thesis, Lancaster University (November 2002)Google Scholar
  28. 28.
    Smith, P.: Programmable Service Deployment with Peer-to-Peer Networks, PhD Thesis, Lancaster University (September 2003)Google Scholar
  29. 29.
    Spence, D., Crowcroft, J., Hand, S., Harris, T.: Location Based Placement of Whole Distributed Systems. In: Proceedings of ACM Conference on Emerging Network Experiment and Technology (CoNEXT 2005), Toulouse, France, pp. 124–134 (October 2005)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Linlin Xie
    • 1
  • Paul Smith
    • 1
  • Mark Banfield
    • 3
  • Helmut Leopold
    • 3
  • James P. G. Sterbenz
    • 1
    • 2
  • David Hutchison
    • 1
  1. 1.Computing Department InfoLab21Lancaster UniversityLancasterUK
  2. 2.Information Technology and Telecommunications Research Center Department of Electrical Engineering and Computer ScienceUniversity of KansasLawrenceUSA
  3. 3.Telekom Austria AGViennaAustria

Personalised recommendations