Cross-Layer Peer-to-Peer Traffic Identification and Optimization Based on Active Networking

  • I. Dedinski
  • H. De Meer
  • L. Han
  • L. Mathy
  • D. P. Pezaros
  • J. S. Sventek
  • X. Y. Zhan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4388)

Abstract

P2P applications appear to emerge as ultimate killer applications due to their ability to construct highly dynamic overlay topologies with rapidly-varying and unpredictable traffic dynamics, which can constitute a serious challenge even for significantly over-provisioned IP networks. As a result, ISPs are facing new, severe network management problems that are not guaranteed to be addressed by statically deployed network engineering mechanisms. As a first step to a more complete solution to these problems, this paper proposes a P2P measurement, identification and optimisation architecture, designed to cope with the dynamicity and unpredictability of existing, well-known and future, unknown P2P systems. The purpose of this architecture is to provide to the ISPs an effective and scalable approach to control and optimise the traffic produced by P2P applications in their networks. This can be achieved through a combination of different application and network-level programmable techniques, leading to a cross-layer identification and optimisation process. These techniques can be applied using Active Networking platforms, which are able to quickly and easily deploy architectural components on demand. This flexibility of the optimisation architecture is essential to address the rapid development of new P2P protocols and the variation of known protocols.

References

  1. Andersen, F.U., De Meer, H., Dedinski, I., Kappler, C., Mäder, A., Oberender, J., Tutschku, K.: Enabling Mobile P2P Networking. In: Kotsis, G., Spaniol, O. (eds.) Euro-NGI 2004. LNCS, vol. 3427, pp. 219–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. Azzouna, N.B., Guillemin, F.: Analysis of ADSL traffic on an IP Backbone link. In: Proceedings of IEEE Globecom 2003, San Francisco, USA, December 1-5 (2003)Google Scholar
  3. Akansu, A.N., Haddad, R.A.: Multiresolution signal decomposition –Transforms, Subbands, and Wavelets. Academic Press, London (2001)MATHGoogle Scholar
  4. Abry, P., Veitch, D.: Wavelet Analysis of Long Range Dependent Traffic. IEEE Transactions on Information Theory 44(1), 2–15 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. Brownlee, N.: Traffic Flow Measurement: Experiences with NeTraMet, IETF, Network Working Group, RFC2123 (March 1997)Google Scholar
  6. Claffy, K.C., Braun, H.-W., Polyzos, G.C.: A Parameterizable Methodology for Internet Traffic Flow Profiling. IEEE Journal On Sketched Areas In Communications 13(8), 1481–1494 (1995)CrossRefGoogle Scholar
  7. Chui, C.K.: An introduction to the wavelets. Academic Press, London (1992)MATHGoogle Scholar
  8. Claffy, K.C.: Internet Traffic Characterization. PhD thesis, University of California, San Diego, CA (1994)Google Scholar
  9. Claffy, K., Polyzos, G., Braun, H.-W.: Application of Sampling Methodologies to Network Traffic Characterisation. In: ACM SIGCOMM 1993, San Francisco, California, USA, September 13-14 (1993)Google Scholar
  10. Daubechies, I. (ed.): Ten Lectures on Wavelets. S.I.A.M (1992)Google Scholar
  11. Erlebacher, G., Hussaini, M.Y., Jameson, L.M. (eds.): Wavelets: Theory and Applications. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  12. Fry, M., Ghosh, A.: Application Level Active Networking. Computer Networks 31(7), 655–667 (1999)CrossRefGoogle Scholar
  13. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, D., Levy, H.M., Zahorjan, J.: Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In: Proceedings of the nineteenth ACM symposium on Operating systems principles, Boston, October 19-22 (2003)Google Scholar
  14. Grossglauser, M., Rexford, J.: Passive Traffic Measurement for IP Operations. In: Park, K., Willinger, W. (eds.) The Internet as a Large-Scale Complex System. Oxford University Press, Oxford (2002)Google Scholar
  15. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: File-sharing in the Internet: A characterization of P2P traffic in the backbone. Technical report (November 2003)Google Scholar
  16. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K.C., Faloutsos, M.: Is P2P dying or just hiding? In: IEEE Global Internet and Next Generation Networks (Globecom 2004), Dallas, Texas, USA, 29 November - 3 December, 2004,Google Scholar
  17. Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.: Transport layer identification of P2P traffic. In: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement 2004 (2004)Google Scholar
  18. Karagiannis, T., Papagiannaki, D., Faloutsos, M.: BLINC: Multilevel Traffic Classification in the Dark. In: ACM SIGCOMM 2005, Philadelphia, PA, USA (August 2005)Google Scholar
  19. Leibowitz, N., Bergman, A., Ben-Shaul, R., Shavit, A.: Are File Swapping Networks Cacheable? Characterizing P2P Traffic. In: 7th International Workshop on Web Content Caching and Distribution (WCW 2003), Boulder, CO (2002)Google Scholar
  20. Le Fessant, F., Handurukande, S., Kermarrec, A.-M., Massoulie, L.: Clustering in peer-to-peer file sharing workloads. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 217–226. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (2001)MATHGoogle Scholar
  22. de Meer, H., Tutschku, K., Tran-Gia, P.: Dynamic Operation in Peer-to-Peer Overlay Networks. Praxis der Informationsverarbeitung und Kommunikation -Special Issue on Peer-to-Peer Systems (PIK Journal) (June 2003)Google Scholar
  23. Oram, A. (ed.): Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology. O’ Reilly (2001)Google Scholar
  24. Schmid, S., Finney, J., Scott, A.C., Shepherd, W.D.: Component-based Active Network Architecture. In: IEEE Symposium on Computers and Communications (July 2001)Google Scholar
  25. Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of p2p traffic using application signatures. In: Proceedings of the 13th international conference on World Wide Web (2004)Google Scholar
  26. Sen, S., Wong, J.: Analyzing peer-to-peer traffic across large networks. In: Second Annual ACM Internet Measurement Workshop (2002)Google Scholar
  27. Tagami, B., Hasegawa, T., Hasegawa, T.: Analysis and Application of Passive Peer Influence on Peer-to-Peer Inter-Domain Traffic. In: Proceedings of the Fourth International Conference on Peer-to-Peer Computing. IEEE, Los Alamitos (2004)Google Scholar
  28. Tutschku, K.: A measurement-based traffic profile of the eDonkey filesharing service. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 12–21. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. Zait, M., Messatfa, H.: Comparative study of clustering methods. Future Gener. Comput. Syst. 13(2-3), 149–159 (1997)CrossRefGoogle Scholar
  30. Zseby, T.: Sampling Techniques for Non-Intrusive QoS Measurements: Challenges and Strategies. In: Computer Communications Special Issue on Monitoring and Measurement (to appear, 2005)Google Scholar
  31. Campbell, A.T., de Meer, H., Kounavis, M.E., Miki, K., Vicente, J.B., Villela, D.: A Survey of Programmable Networks. ACM SIGCOMM Comput. Commun. 29(2) (April 1999)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • I. Dedinski
    • 1
  • H. De Meer
    • 1
  • L. Han
    • 2
  • L. Mathy
    • 3
  • D. P. Pezaros
    • 3
  • J. S. Sventek
    • 2
  • X. Y. Zhan
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of PassauPassauGermany
  2. 2.Department of Computing ScienceUniversity of GlasgowScotland, UK
  3. 3.Computing DepartmentLancaster UniversityLancasterUK

Personalised recommendations