SAND: A Scalable, Distributed and Dynamic Active Networks Directory Service

  • M. Sifalakis
  • A. Mauthe
  • David Hutchison
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4388)


In the past a significant amount of work has been invested on architecting active node platforms that solve problems in various application areas by means of programmability. Yet, much less attention has been paid to the deployment aspects of these platforms in real networks. An open issue in particular is how active resources can be discovered and deployed. In this paper we present SAND, a scalable distributed and dynamic architecture that enables the discovery of active resources along and alongside a given network path. One of the main strengths of SAND is its customizability which renders it suitable to a multitude of network environments. As an active service, SAND does not have dependencies on any active platform and at the same time enables an active node to become part of a global infrastructure of discoverable active resources.


Service Composition Active Node Network Transport Data Path Resource Discovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wakeman, I., Jeffrey, A., Owen, T., Pepper, D.: SafetyNet: A Language-Based Approach to Programmable Networks. Computer Networks and ISDN Systems 36(1) (2001)Google Scholar
  2. 2.
    The Caml Language. Online Reference, INRIA,
  3. 3.
    Wetherall, D.J., Guttag, J., Tennenhouse, T.L.: ANTS: A toolkit for building and dynamically deploying network protocols. Proc. of IEEE Openarch (April 1998)Google Scholar
  4. 4.
    Hicks, M.W., Kaddar, P., Moore, J.T., Gunter, C.A., Nettles, S.: PLAN: A Packet Language for Active Networks. In: Proceedings of the 3rd ACM SIGPLAN International Conference on Functional Programming, pp. 86–93 (1998)Google Scholar
  5. 5.
    Paterson, L., Gottlieb, Y., Hibler, M., Tullmann, P., Lepreau, J., Schwab, S., Dandelkar, H., Purtell, A., Hartman, J.: An OS Interface for Active Routers. IEEE Journal on Selected Areas in Communications 19(3), 473–487 (2001)CrossRefGoogle Scholar
  6. 6.
    Merugu, S., Bhattacharjee, S., Zegura, E., Calvert, K.: Bowman: A Node OS for Active Networks. In: Proceedings of IEEE INFOCOMM 2000, Tel Aviv, Israel, March 26-30 (2000)Google Scholar
  7. 7.
    Keller, R., et al.: An Active Router Architecture for Multicast Video Distribution. In: Proc. of IEEE INFOCOM, vol. (3), pp. 1137–1146 (2000)Google Scholar
  8. 8.
    Keller, R., et al.: PromethOS: A dynamically extensible router architecture supporting explicit routing. In: Sterbenz, J.P.G., Takada, O., Tschudin, C.F., Plattner, B. (eds.) IWAN 2002. LNCS, vol. 2546, pp. 20–31. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Schmid, S., Finney, J., Scott, A.C., Shepherd, W.D.: Component-based Active Network Architecture. In: IEEE Symposium on Computers and Communications (July 2001)Google Scholar
  10. 10.
    Merugu, S., Bhattacharjee, S., Chae, Y., Sanders, M., Calvert, K., Zegura, E.: Bowman and CANEs: Implementation of an Active Network. In: Proc. of 37th Conference on Communication, Control and Computing (September 1999)Google Scholar
  11. 11.
    Bossardt, M., Antik, R.H., Moser, A., Plattner, B.: Chameleon: Realising Automatic Service Composition for Extensible Active Routers. In: Wakamiya, N., Solarski, M., Sterbenz, J.P.G. (eds.) IWAN 2003. LNCS, vol. 2982. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Eugene Ng, T.S., Zhang, H.: A Network Positioning System for the Interne. In: USENIX Annual Technical Conference (2004)Google Scholar
  13. 13.
    Sifalakis, M., Mauthe, A., Hutchison, D.: SAND: A Scalable, Distributed and Dynamic Active Networks Directory Service. Technical Report TR-COMP-008-2005, Lancaster University (July 2005)Google Scholar
  14. 14.
    Wahl, M., Howes, T., Kille, S.: Lightweight Directory Access Protocol (v3). RFC 2251 (December 1997)Google Scholar
  15. 15.
    Plaxton, C.G.: On the network complexity of selection. In: Proc. of Annual Symposium on Foundations of Computer Science (October 1989)Google Scholar
  16. 16.
    Abstract Syntax Notation One (ASN.1) and ASN.1 Encoding Rules. ITU-T Rec. X.680–683 and X.690–693 (2002)Google Scholar
  17. 17.
    Allen, J., Mealling, M.: The Architecture of the Common Indexing Protocol (CIP). RFC 2651 (August 1999)Google Scholar
  18. 18.
    Sifalakis, M., Schmid, S., Chart, T., Hutchison, D.: A Generic Active Service Deployment Protocol. In: Proc. of ANTA 2003 (May 2003)Google Scholar
  19. 19.
    Veizades, J., Guttman, E., Perkins, C., Kaplan, S.: Service Location Protocol. RFC 2165 (June 1997)Google Scholar
  20. 20.
    Microsoft corporation. Windows Server 2003 Active Directory (2003)Google Scholar
  21. 21.
    Gulbrandsen, A., Vixie, P., Esibov, L.: A DNS RR for specifying the location of services (DNS SRV). RFC 2782 (February 2000)Google Scholar
  22. 22.
    Karrer, R., Gross, T.: Location Selection for Active Services. Cluster Comp.: Journal of Networks, Software and Applications (March 2002)Google Scholar
  23. 23.
    Haas, R., Droz, P., Stiller, B.: Autonomic service deployment in networks. IBM Systems Journal 42(1), 150–164 (2003)CrossRefGoogle Scholar
  24. 24.
    Martin, S., Leduc, G.: Dynamic Neighbourhood Discovery Protocol for Active Overlay Networks. In: Wakamiya, N., Solarski, M., Sterbenz, J.P.G. (eds.) IWAN 2003. LNCS, vol. 2982. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Keller, R., et al.: Active Pipes: Service Composition for Programmable Networks. In: Proc. of IEEE MILCOM 2001 (2001)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • M. Sifalakis
    • 1
  • A. Mauthe
    • 1
  • David Hutchison
    • 1
  1. 1.Computing DepartmentLancaster UniversityU.K.

Personalised recommendations