Validating Inter-domain SLAs with a Programmable Traffic Control System

  • Elisa Boschi
  • Matthias Bossardt
  • Thomas Dübendorfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4388)

Abstract

For network users and service providers it is important to validate the compliance of network services to the guarantees given in Service Level Agreements (SLAs). This is particularly challenging in inter-domain environments. In this paper, we propose a novel solution for inter-domain SLA validation, based on programmable traffic processing devices that are attached to routers and located in several autonomous systems. Using our service management infrastructure, the measurement logic is deployed on the traffic processing devices in a flexible and secure way. We safely delegate partial network management capability from network operators to network users, which are enabled to configure service logic on the traffic processing devices. At the same time, the management infrastructure guarantees against negative influence of the network user’s configuration on network stability or other user’s traffic. Via the flexible configuration of service logic, our system gives network users powerful means to observe quality of service parameters agreed upon in SLAs. We present a detailed scenario of the SLA validation service and its deployment across several administrative domains.

Keywords

Inter-domain measurement programmable networks SLA validation network service management delegation 

References

  1. 1.
    Almes, G., Kalidindi, S., Zekauskas, M.: RFC 2679, A One-way Delay Metric for IPPM (September 1999), ftp://ftp.rfc-editor.org/in-notes/rfc2679.txt
  2. 2.
    Attig, M., Lockwood, J.W.: A Framework for Rule Processing in Reconfigurable Network Systems. In: Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa, USA (April 2005)Google Scholar
  3. 3.
    Boschi, E., Denazis, S., Zseby, T.: A Measuremnet Infrastructure for Inter-domain SLA Validation. Elsevier Journal of Computer Communications: Special Issue on End-to-end QoS Provision Advances (to appear)Google Scholar
  4. 4.
    Boschi, E., Mark, L.: Use of IPFIX for Export of Per-Packet Information, Internet-draft, work in progress (2005)Google Scholar
  5. 5.
    Bossardt, M., Dübendorfer, T., Plattner, B.: Enhanced Internet Security by a Distributed Traffic Control Service Based on Traffic Ownership. Elsevier Journal of Network and Computer Applications: Special Issue on DDoS and Intrusion Detection (to appear, 2005)Google Scholar
  6. 6.
    Bossardt, M., Hoog Antink, R., Moser, A., Plattner, B.: Chameleon: Realizing Automatic Service Composition for Extensible Active Routers. In: Wakamiya, N., Solarski, M., Sterbenz, J.P.G. (eds.) IWAN 2003. LNCS, vol. 2982. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Claise, B., Bryant, S., Sadasivan, G., Leinen, S., Dietz, T.: IPFIX Protocol Specification, Interrnet-draft, work in progress (2005)Google Scholar
  8. 8.
    Demichelis, C., Chimento, P.: RFC 3393, IP Packet Delay Variation (November 2002), ftp://ftp.rfc-editor.org/in-notes/rfc3393.txt
  9. 9.
    Dübendorfer, T., Bossardt, M., Plattner, B.: Adaptive Distributed Traffic Control Service for DDoS Attack Mitigation. In: IEEE Proceedings of IPDPS, International Workshop on Security in Systems and Networks SSN (2005)Google Scholar
  10. 10.
    Duffield, N., Grossglauser, M.: Trajectory Sampling for Direct Traffic Observation. In: ACM SIGCOMM 2000 (2000)Google Scholar
  11. 11.
    Calhoun, P., et al.: RFC 3588, Diameter Base Protocol (September 2003), ftp://ftp.rfc-editor.org/in-notes/rfc3588.txt
  12. 12.
    Graham, I.D., Donnelly, S.F., Martin, S., Martens, J., Cleary, J.G.: Nonintrusive and accurate measurement of unidirectional delay and delay variation on the internet. In: INET 1998 Proceedings (1998)Google Scholar
  13. 13.
    Internet Engineering Task Force, http://www.ietf.org/
  14. 14.
  15. 15.
  16. 16.
    IP Flow Information Export (IPFIX), http://www.ietf.org/html.charters/ipfix-charter.html
  17. 17.
    Jacobs, P., Davie, B.: Technical Challenges in the Delivery of Interprovider QoS. IEEE Communications Magazine, 112–118 (June 2005)Google Scholar
  18. 18.
    Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The Click Modular Router. ACM Transactions on Computer Systems 18(3), 263–297 (2000)CrossRefGoogle Scholar
  19. 19.
    Lockwood, J., Naufel, N., Turner, J., Taylor, D.: Reprogrammable network packet processing on the field programmable port extender (FPX). In: Proceedings of the ACM International Symposium on Field Programmable Gate Arrays (FPGA 2001) (February 2001)Google Scholar
  20. 20.
    NIMI National Internet Measurement Infrastructure, http://www.ncne.nlanr.net/nimi/
  21. 21.
  22. 22.
    Schuehler, D.V., Lockwood, J.W.: A Modular System for FPGA-based TCP Flow Processing in High-Speed Networks. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 301–310. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Zseby, T., Zander, S., Carle, G.: Evaluation of Building Blocks for Passive One-way-delay Measurements. In: Proceedings of Passive and Active Measurement Workshop (PAM) (2001)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2009

Authors and Affiliations

  • Elisa Boschi
    • 1
  • Matthias Bossardt
    • 2
  • Thomas Dübendorfer
    • 2
  1. 1.Sophia Antipolis LabHitachi EuropeFrance
  2. 2.Computer Engineering and Networks LaboratorySwiss Federal Institute of Technology, ETHZürichSwitzerland

Personalised recommendations