Advertisement

Aging: Evolutionary Theory Meets Genomic Approaches

  • George L. Sutphin
  • Brian K. Kennedy
Chapter

Abstract

Modern evolutionary theory describes aging as the result of an accumulation of late-acting, deleterious genes caused by reduced force of natural selection late in life, combined with selection for genes that are beneficial early in life but damaging late in life. Theories based on this logic predict that organisms will be optimized for overall fitness as opposed to maximum longevity. Recent advances in genomics combined with large-scale methods for single gene knockout in several common aging models have allowed the first genome-wide studies of life span. These studies provide insight into several aspects of the biology of aging that relate to evolution, including the scope of cellular processes that influence longevity and the conservation of longevity determinants between organisms. Here we review the evolution of the aging field over the past several years and the implications of the move toward genomics. We also highlight key results and discuss their importance and relation to evolutionary theories of aging.

Keywords

Life Span Extend Life Span Increase Life Span Worm Gene Chronological Life Span 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aparicio OM, Billington BL, Gottschling DEe (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in Saccharomyces cerevisiae. Cell 66:1279–1287PubMedCrossRefGoogle Scholar
  2. Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809PubMedCrossRefGoogle Scholar
  3. Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8:333–341PubMedCrossRefGoogle Scholar
  4. Bartke A (2008) Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: novel findings. Aging Cell 7:285–290PubMedCrossRefGoogle Scholar
  5. Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS (2001) Extending the lifespan of long-lived mice. Nature 414:412PubMedCrossRefGoogle Scholar
  6. Becker KG (2002) Deciphering the gene expression profile of long-lived snell mice. Sci Aging Knowledge Environ 2002:pe4Google Scholar
  7. Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177PubMedCrossRefGoogle Scholar
  8. Bluher M, Kahn BB, Kahn RC (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574PubMedCrossRefGoogle Scholar
  9. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6:759–767PubMedCrossRefGoogle Scholar
  10. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33PubMedCrossRefGoogle Scholar
  11. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015PubMedCrossRefGoogle Scholar
  12. Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ (1997) Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11:255–269PubMedCrossRefGoogle Scholar
  13. Buck S, Vettraino J, Force AG, Arking R (2000) Extended longevity in Drosophila is consistently associated with a decrease in developmental viability. J Gerontol A Biol Sci Med Sci 55:B292–301PubMedGoogle Scholar
  14. Burger JM, Hwangbo DS, Corby-Harris V, Promislow DE (2007) The functional costs and benefits of dietary restriction in Drosophila. Aging Cell 6:63–71PubMedCrossRefGoogle Scholar
  15. Chapman T, Partridge L (1996) Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci 263:755–759PubMedCrossRefGoogle Scholar
  16. Chen D, Pan KZ, Palter JE, Kapahi P (2007a) Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 6:525–533PubMedCrossRefGoogle Scholar
  17. Chen J, Senturk D, Wang JL, Muller HG, Carey JR, Caswell H, Caswell-Chen EP (2007b) A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 62:126–135PubMedGoogle Scholar
  18. Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N, Murphy MM, Appella E, Alt FW (2005) Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2:67–76PubMedCrossRefGoogle Scholar
  19. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106PubMedCrossRefGoogle Scholar
  20. Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L (2002) Dietary restriction in long-lived dwarf flies. Science 296:319PubMedCrossRefGoogle Scholar
  21. Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144:3799–3810PubMedCrossRefGoogle Scholar
  22. Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56PubMedCrossRefGoogle Scholar
  23. De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481PubMedCrossRefGoogle Scholar
  24. Dhahbi JM, Kim HJ, Mote PL, Beaver RJ, Spindler SR (2004) Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci USA 101:5524–5529PubMedCrossRefGoogle Scholar
  25. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401PubMedCrossRefGoogle Scholar
  26. Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141:1399–1406PubMedGoogle Scholar
  27. Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81PubMedCrossRefGoogle Scholar
  28. Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J. Cell Biol 166:1055–1067PubMedCrossRefGoogle Scholar
  29. Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD (2005) Sir2 blocks extreme life-span extension. Cell 123:655–667PubMedCrossRefGoogle Scholar
  30. Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA (2008) The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3:e2020PubMedCrossRefGoogle Scholar
  31. Fisher RA (1930) The genetical theory of natural selection. Oxford Press, OxfordGoogle Scholar
  32. Flurkey K, Papaconstantinou J,Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123:121–130PubMedCrossRefGoogle Scholar
  33. Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo J 26:1913–1923PubMedCrossRefGoogle Scholar
  34. Gershman B, Puig O, Hang L, Peitzsch RM, Tatar M, Garofalo RS (2007) High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol Genomics 29:24–34PubMedGoogle Scholar
  35. Giannakou ME, Goss M, Partridge L (2008) Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7:187–198PubMedCrossRefGoogle Scholar
  36. Golden TR, Hubbard A, Melov S (2006) Microarray analysis of variation in individual aging C. elegans: approaches and challenges. Exp Gerontol 41:1040–1045PubMedCrossRefGoogle Scholar
  37. Good TP, Tatar M (2001) Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. J Insect Physiol 47:1467–1473PubMedCrossRefGoogle Scholar
  38. Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at Saccharomyces cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762PubMedCrossRefGoogle Scholar
  39. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–56PubMedCrossRefGoogle Scholar
  40. Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120:473–482PubMedCrossRefGoogle Scholar
  41. Guertin DA, Guntur KV, Bell GW, Thoreen CC, Sabatini DM (2006) Functional genomics identifies TOR-regulated genes that control growth and division. Curr Biol 16:958–970PubMedCrossRefGoogle Scholar
  42. Haldane JBS (1941) New paths in genetics. Allen & Unwin, LondonGoogle Scholar
  43. Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555PubMedCrossRefGoogle Scholar
  44. Han ES, Wu Y, McCarter R, Nelson JF, Richardson A, Hilsenbeck SG (2004) Reproducibility, sources of variability, pooling, and sample size: important considerations for the design of high-density oligonucleotide array experiments. J Gerontol A Biol Sci Med Sci 59:306–315PubMedGoogle Scholar
  45. Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128PubMedCrossRefGoogle Scholar
  46. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110PubMedCrossRefGoogle Scholar
  47. Helliwell SB, Howald I, Barbet N, Hall MN (1998) TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148:99–112PubMedGoogle Scholar
  48. Hercus MJ, Loeschcke V, Rattan SI (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4:149–156PubMedCrossRefGoogle Scholar
  49. Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187PubMedCrossRefGoogle Scholar
  50. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954PubMedCrossRefGoogle Scholar
  51. Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD- dependent histone deacetylase. Nature 403:795–800PubMedCrossRefGoogle Scholar
  52. Iser WB, Wolkow CA (2007) DAF-2/insulin-like signaling in C. elegans modifies effects of dietary restriction and nutrient stress on aging, stress and growth. PLoS ONE 2:e1240PubMedCrossRefGoogle Scholar
  53. Ivy JM, Klar AJ, Hicks JB (1986) Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 6:688–702PubMedGoogle Scholar
  54. Jenkins NL, McColl G, Lithgow GJ (2004) Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci 271:2523–2526PubMedCrossRefGoogle Scholar
  55. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906PubMedCrossRefGoogle Scholar
  56. Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137PubMedGoogle Scholar
  57. Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21:3061–3066PubMedCrossRefGoogle Scholar
  58. Kaeberlein M (2004) Aging-related research in the “-omics” age. Sci Aging Knowledge Environ pe39Google Scholar
  59. Kaeberlein M (2006) Longevity and aging in the budding yeast. In: Conn PM (ed) Handbook of models for human aging. Elsevier, Boston, MAGoogle Scholar
  60. Kaeberlein M, Kennedy BK (2008) Protein translation, 2008. Aging Cell 7:777–782PubMedCrossRefGoogle Scholar
  61. Kaeberlein M, Powers RW, 3rd (2007) Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 6:128–140PubMedCrossRefGoogle Scholar
  62. Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580PubMedCrossRefGoogle Scholar
  63. Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066PubMedCrossRefGoogle Scholar
  64. Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLOS Biol 2:1381–1387CrossRefGoogle Scholar
  65. Kaeberlein M, Powers III RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life-span by TOR and Sch9 in response to nutrients. Science 310:1193–1196PubMedCrossRefGoogle Scholar
  66. Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet. 3:655–660CrossRefGoogle Scholar
  67. Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5:487–494PubMedCrossRefGoogle Scholar
  68. Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237PubMedCrossRefGoogle Scholar
  69. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890PubMedCrossRefGoogle Scholar
  70. Kayo T, Allison DB, Weindruch R, Prolla TA (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 98:5093–5098PubMedCrossRefGoogle Scholar
  71. Kennedy BK (2008) The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms. J Intern Med 263:142–152PubMedCrossRefGoogle Scholar
  72. Kennedy BK, Smith ED, Kaeberlein M (2005) The enigmatic role of Sir2 in aging. Cell 123:548–550PubMedCrossRefGoogle Scholar
  73. Kennedy BK, Steffen KK, Kaeberlein M (2007) Ruminations on dietary restriction and aging. Cell Mol Life Sci 64:1323–1328PubMedCrossRefGoogle Scholar
  74. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464PubMedCrossRefGoogle Scholar
  75. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. Embo J 26:3169–3179PubMedCrossRefGoogle Scholar
  76. Kim Y, Sun H (2007) Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 6:489–503PubMedCrossRefGoogle Scholar
  77. Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304PubMedCrossRefGoogle Scholar
  78. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447PubMedCrossRefGoogle Scholar
  79. Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci 205:531–546PubMedCrossRefGoogle Scholar
  80. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096PubMedCrossRefGoogle Scholar
  81. Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309:1861–1864PubMedCrossRefGoogle Scholar
  82. Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci USA 101:7663–7668PubMedCrossRefGoogle Scholar
  83. Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97:5807–5811PubMedCrossRefGoogle Scholar
  84. Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, Zou S (2006) Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5:515–524PubMedCrossRefGoogle Scholar
  85. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48PubMedCrossRefGoogle Scholar
  86. Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8:38–48PubMedCrossRefGoogle Scholar
  87. Libert S, Zwiener J, Chu X, Van Voorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:1133–1137PubMedCrossRefGoogle Scholar
  88. Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128PubMedCrossRefGoogle Scholar
  89. Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348PubMedCrossRefGoogle Scholar
  90. Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92:7540–7544PubMedCrossRefGoogle Scholar
  91. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148PubMedCrossRefGoogle Scholar
  92. Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733PubMedCrossRefGoogle Scholar
  93. Marden JH, Rogina B, Montooth KL, Helfand SL (2003) Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA 100:3369–3373PubMedCrossRefGoogle Scholar
  94. Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166PubMedCrossRefGoogle Scholar
  95. Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13:25–34PubMedCrossRefGoogle Scholar
  96. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922PubMedCrossRefGoogle Scholar
  97. Masternak MM, Al-Regaiey K, Bonkowski MS, Panici J, Sun L, Wang J, Przybylski GK, Bartke A (2004) Divergent effects of caloric restriction on gene expression in normal and long-lived mice. J Gerontol A Biol Sci Med Sci 59:784–788PubMedGoogle Scholar
  98. McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36:197–204PubMedCrossRefGoogle Scholar
  99. McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life and upon ultimate size. J Nutr 10:63–79Google Scholar
  100. McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–121PubMedCrossRefGoogle Scholar
  101. Medawar P (1952) An unsolved problem in biology. H.K. Lewis, LondonGoogle Scholar
  102. Medawar PB (1946) Old age and natural death. Mod 1:30–56Google Scholar
  103. Melov S, Hubbard A (2004) Microarrays as a tool to investigate the biology of aging: a retrospective and a look to the future. Sci Aging Knowledge Environ re7Google Scholar
  104. Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A (2002) Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 16:2657–2666PubMedCrossRefGoogle Scholar
  105. Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Strong R (2007) An aging interventions testing program: study design and interim report. Aging Cell 6:565–575PubMedCrossRefGoogle Scholar
  106. Mockett RJ, Sohal RS (2006) Temperature-dependent trade-offs between longevity and fertility in the Drosophila mutant, methuselah. Exp Gerontol 41:566–573PubMedCrossRefGoogle Scholar
  107. Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752PubMedCrossRefGoogle Scholar
  108. Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563PubMedCrossRefGoogle Scholar
  109. Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143:1207–1218PubMedGoogle Scholar
  110. Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283PubMedCrossRefGoogle Scholar
  111. Nair PN, Golden T, Melov S (2003) Microarray workshop on aging. Mech Ageing Dev 124:133–138PubMedCrossRefGoogle Scholar
  112. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918PubMedCrossRefGoogle Scholar
  113. Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12:712–723PubMedCrossRefGoogle Scholar
  114. Powers RW, 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184PubMedCrossRefGoogle Scholar
  115. Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–1099PubMedCrossRefGoogle Scholar
  116. Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22PubMedGoogle Scholar
  117. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53PubMedCrossRefGoogle Scholar
  118. Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003PubMedCrossRefGoogle Scholar
  119. Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140PubMedCrossRefGoogle Scholar
  120. Rogina B, Helfand SL, Frankel S (2002) Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298:1745PubMedCrossRefGoogle Scholar
  121. Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, Hirozane-Kishikawa T, Vandenhaute J, Orkin SH, Hill DE, van den Heuvel S, Vidal M (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14:2162–2168PubMedCrossRefGoogle Scholar
  122. Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles-a cause of aging in yeast. Cell 91:1033–1042PubMedCrossRefGoogle Scholar
  123. Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, Johnston ED, Tchao BN, Pak DN, Welton KL, Promislow DEL, Thomas JH, Kaeberlein M, Kennedy BK (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18:564–570PubMedCrossRefGoogle Scholar
  124. Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–254PubMedCrossRefGoogle Scholar
  125. Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97:6658–6663PubMedCrossRefGoogle Scholar
  126. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast lifespan extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133:292–302PubMedCrossRefGoogle Scholar
  127. Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54PubMedCrossRefGoogle Scholar
  128. Taguchi A, White MF (2008) Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70:191–212PubMedCrossRefGoogle Scholar
  129. Tanner KG, Landry J, Sternglanz R, Denu JM (2000) Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97:14178–14182PubMedCrossRefGoogle Scholar
  130. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110PubMedCrossRefGoogle Scholar
  131. Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854PubMedCrossRefGoogle Scholar
  132. Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230PubMedCrossRefGoogle Scholar
  133. Toivonen JM, Partridge L (2008) Endocrine regulation of ageing and reproduction in Drosophila. Mol Cell EndocrinolGoogle Scholar
  134. Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, Oakes JA, Kennedy BK, Kaeberlein M (2006) Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5:505–514PubMedCrossRefGoogle Scholar
  135. Tu MP, Epstein D, Tatar M (2002) The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell 1:75–80PubMedCrossRefGoogle Scholar
  136. Valenzuela L, Aranda C, Gonzalez A (2001) TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol 183:2331–2334PubMedCrossRefGoogle Scholar
  137. van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279:28873–28879PubMedCrossRefGoogle Scholar
  138. Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci USA 96:11399–11403PubMedCrossRefGoogle Scholar
  139. Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159PubMedCrossRefGoogle Scholar
  140. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620PubMedCrossRefGoogle Scholar
  141. Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615PubMedCrossRefGoogle Scholar
  142. Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ (2000) Evolution of lifespan in C. elegans. Nature 405:296–297PubMedCrossRefGoogle Scholar
  143. Wallace AR (1889) The action of natural selection in producing old age, decay and death [a note by Wallace written “some time between 1865 and 1870”]. In: Weismann A (ed) Essays on hereditary and kindred biological problems. Clarendon, OxfordGoogle Scholar
  144. Wang DY, Kumar S, Hedges SB (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci 266:163–171PubMedCrossRefGoogle Scholar
  145. Wang Y, Wook Oh S, Deplancke B, Luo J, Walhout AJM, Tissenbaum HA (2006) C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 127:741–747PubMedCrossRefGoogle Scholar
  146. Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, Springfield, ILGoogle Scholar
  147. Weindruch R, Kayo T, Lee CK, Prolla TA (2001) Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 131:918S–923SPubMedGoogle Scholar
  148. Weismann A (1889) Essays upon hereditary and kindred biological problems. Clarendon, OxfordGoogle Scholar
  149. Werner T (2007) Regulatory networks: linking microarray data to systems biology. Mech Ageing Dev 128:168–172PubMedCrossRefGoogle Scholar
  150. Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411CrossRefGoogle Scholar
  151. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu M, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmerman K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906PubMedCrossRefGoogle Scholar
  152. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  153. Yang R, Wek SA, Wek RC (2000) Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol Cell Biol 20:2706–2717PubMedCrossRefGoogle Scholar
  154. Zou S, Meadows S, Sharp L, Jan LY, Jan YN (2000) Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 97:13726–13731PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Departments of PathologyUniversity of WashingtonSeattleUSA
  2. 2.The Molecular and Cellular Biology ProgramUniversity of WashingtonSeattleUSA
  3. 3.Department of BiochemistryUniversity of WashingtonSeattleUSA

Personalised recommendations