Hamiltonian Structures for General PDEs

  • P. KerstenEmail author
  • I. S. Krasil′shchik
  • A. M. Verbovetsky
  • R. Vitolo
Part of the Abel Symposia book series (ABEL, volume 5)


We sketch out a new geometric framework to construct Hamiltonian operators for generic, non-evolutionary partial differential equations. Examples on how the formalism works are provided for the KdV equation, Camassa-Holm equation, and Kupershmidt’s deformation of a bi-Hamiltonian system.


Hamiltonian differential equation bi-Hamiltonian system non-evolution equation Camassa-Holm equation Kupershmidt’s deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bocharov, A.V., Chetverikov, V.N., Duzhin, S.V., Khor′kova, N.G., Krasil′shchik, I.S., Samokhin, A.V., Torkhov, Y.N., Verbovetsky, A.M., Vinogradov, A.M.: Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Monograph. Amer. Math. Soc. (1999)Google Scholar
  2. 2.
    Dudnikov, P., Samborski, S.: Linear overdetermined systems of partial differential equations. In: M. Shubin (ed.) Partial Differential Equations VIII, Encycl. Math. Sci., vol. 65, pp. 1–86. Springer, Berlin (1996)Google Scholar
  3. 3.
    Igonin, S., Kersten, P., Krasilshchik, I., Verbovetsky, A., Vitolo, R.: Variational brackets in the geometry of PDEs (2009). To appearGoogle Scholar
  4. 4.
    Karasu-Kalkanlı, A., Karasu, A., Sakovich, A., Sakovich, S., Turhan, R.: A new integrable generalization of the Korteweg-de Vries equation. J. Math. Phys. 49, 073,516 (2008), arXiv:0708.3247Google Scholar
  5. 5.
    Kersten, P., Krasil′shchik, I., Verbovetsky, A., Vitolo, R.: Integrability of Kupershmidt deformations. Acta Appl. Math. (2009). To appearGoogle Scholar
  6. 6.
    Krasil′shchik, J., Verbovetsky, A.M.: Homological Methods in Equations of Mathematical Physics. Advanced Texts in Mathematics. Open Education & Sciences, Opava (1998), arXiv:math/9808130Google Scholar
  7. 7.
    Kupershmidt, B.A.: Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism. In: G. Kaiser, J.E. Marsden (eds.) Geometric Methods in Mathematical Physics, Lect. Notes in Math., pp. 162–218. Springer, Berlin (1980)CrossRefGoogle Scholar
  8. 8.
    Kupershmidt, B.A.: KdV6: An integrable system. Phys. Lett. A 372, 2634–2639 (2008), arXiv:0709.3848MathSciNetGoogle Scholar
  9. 9.
    Tsarev, S.: The Hamilton property of stationary and inverse equations of condensed matter mechanics and mathematical physics. Math. Notes 46, 569–573 (1989)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Vinogradov, A.M.: Cohomological Analysis of Partial Differential Equations and Secondary Calculus. Amer. Math. Soc. (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. Kersten
    • 2
    Email author
  • I. S. Krasil′shchik
    • 1
  • A. M. Verbovetsky
    • 1
  • R. Vitolo
    • 3
  1. 1.Independent University of MoscowMoscowRussia
  2. 2.University of TwenteEnschedeThe Netherlands
  3. 3.Department of Mathematics “E. De Giorgi”Università del SalentoLecceItaly

Personalised recommendations