Advertisement

Transformations of Darboux Integrable Systems

  • Ian M. AndersonEmail author
  • Mark E. Fels
Chapter
Part of the Abel Symposia book series (ABEL, volume 5)

Abstract

This article reviews some recent theoretical results about the structure of Darboux integrable differential systems and their relationship with symmetry reduction of exterior differential systems. The symmetry reduction representation of Darboux integrable equations is then used to derive some new and unusual transformations.

Keywords

Symmetry Group Differential System Integral Manifold Symmetry Reduction Differential Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Anderson and M. E. Fels, Exterior Differential Systems with Symmetry, Acta. Appl. Math. 87 (2005), 3–31zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    I. M. Anderson, M. E. Fels, and P. J. Vassiliou, Superposition Formulas for Exterior Differential Systems, available at arXiv:math/0708.0678.Google Scholar
  3. 3.
    I. M. Anderson and M. Juráš, Generalized Laplace Invariants and the Method of Darboux, Duke J. Math 89 (1997), 351–375zbMATHCrossRefGoogle Scholar
  4. 4.
    I. M. Anderson and N. Kamran, The Variational Bicomplex for Second Order Partial Differential Equations in the Plane, Duke J. Math. 87 (1997), 265–319zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. L. Bryant, S. S. Chern, R. B. Gardner, H. Goldschmidt, and P. A Griffiths, Essays on Exterior Differential Systems, MSRI Publications, Vol. 18, Springer-Verlag, New York, 1991.Google Scholar
  6. 6.
    R. L. Bryant and P. A. Griffiths, Characteristic cohomology of differential systems, II: Conservation laws for a class of parabolic equations, Duke Math. J. 78 (1995), no. 3, 531–676zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. L. Bryant, P. A. Griffiths, and L. Hsu, Hyperbolic exterior differential systems and their conservation laws, Parts I and II, Selecta Math., New series 1 (1995), 21–122 and 265-323.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    É. Cartan, Sur intÉgration des systèmes diffÉrentiels complètement intÉgrables, C. R. Acad. Sc, 134 (1902), 1415–1418 and 1564-1566.Google Scholar
  9. 9.
    É Cartan, Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre, Ann. Sci. École Norm. 3 (1910), no. 27, 109-192.Google Scholar
  10. 10.
    J. N. Clelland and T. A. Ivey, Bäcklund transformatiosn and Darboux integrability for non-linear wave equations, to appear, Asian J. Math.Google Scholar
  11. 11.
    G. Darboux, Leçons sur la thÉorie gÉnÉrale des surfaces et les applications gÉomÉtriques du calcul infinitÉsimal, Gauthier-Villars, Paris, 1896.zbMATHGoogle Scholar
  12. 12.
    B. Doubrov and I. Zelenko, On local geometry of nonholonomic rank 2 distributions (March 22, 2007), available at arXiv:math/073662v1.Google Scholar
  13. 13.
    M. E. Fels, Integrating scalar ordinary differential equations with symmetry revisited, Foundations of Comp. Math. 7 (2007), 417–454zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Forsyth, Theory of Differential Equations, Vol 6, Dover Press, New York, 1959.zbMATHGoogle Scholar
  15. 15.
    E. Goursat, Sur une Équations aux dÉrivÉes partielle, Bulletin de SociÉtÉ MathÉmatique de France 25 (1897), 36–48MathSciNetGoogle Scholar
  16. 16.
    E. Goursat, Lecon sur l'intÉgration des Équations aux dÉriÉes partielles du second ordre á deux variables indÉpendantes, Tome 1, Tome 2, Hermann, Paris, 1897.Google Scholar
  17. 17.
    E. Goursat, Recherches sur quelques Équations aux dÉriÉes partielles du second ordre, Ann. Fac. Sci. Toulouse 1 (1899), 31–78 and 439-464.MathSciNetGoogle Scholar
  18. 18.
    E. Goursat, Sur une transformation de lÉquation s2 = 4λ(x, y)pq, Bulletin de SociÉtÉ MathÉmatique de France 28 (1900), 1–6zbMATHMathSciNetGoogle Scholar
  19. 19.
    E. Kamke, Differentialgleichungen, 3rd ed., Chelsea, New York, 1947.Google Scholar
  20. 20.
    B. Kruglikov and V. Lychagin, A compatibility criteria for systems of PDEs and generalized Lagrange-Charpit method, AIP Conference Proceedings, Global Analysis and Applied Mathematics: International Workshop on Global Analysis 729 (2004), no. 1, 39–53MathSciNetGoogle Scholar
  21. 21.
    A. Kushner, V. Lychagin, and V. Rubtsov, Contact Geometry and Nonlinear Differential Equations, Encylodedia of Mathematics and its Applications, vol. 101, Cambridge Univ. Press, 2007.Google Scholar
  22. 22.
    P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Springer, New York, 1993.zbMATHGoogle Scholar
  23. 23.
    V. V. Sokolov and A. V. Ziber, On the Darboux integrable hyperbolic equations, Phys Lett. A 208, 303-308.Google Scholar
  24. 24.
    O. Stormark, Lie's structural approach to PDE systems, Encyclopedia of Mathematics and its Applications, vol. 80, Cambridge University Press, Cambridge, UK, 2000.Google Scholar
  25. 25.
    E. Vessiot, Sur une classsse de faisceaux complets de degrÉ 2, Bull. Soc. Math. France 45 (1937), 149–167MathSciNetGoogle Scholar
  26. 26.
    E. Vessiot, Sur les Équations aux dÉrivÉes partielles du second ordre, F(x, y, z, p, q, r, s, t) = 0, intÉgrables par la mÉthode de Darboux, J. Math. Pure Appl. 18 (1939), 1–61zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    E. Vessiot, Sur les Équations aux dÉrivÉes partielles du second ordre, F(x, y, z, p, q, r, s, t) = 0, intÉgrables par la mÉthode de Darboux, J. Math. Pure Appl. 21 (1942), 1–66zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    K. Yamaguchi, Contact Geometry of Second Order I. these proceedings.Google Scholar
  29. 29.
    M. Yu. Zvyagin, Classification of Bäcklund transformations of second order partial differential equations, Soviet Math. Dokl. 43 (1991), 422–429MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUtah State UniversityUTUSA

Personalised recommendations