Advertisement

Compatible Poisson brackets, quadratic Poisson algebras and classical r-matrices

  • V. RoubtsovEmail author
  • T. Skrypnyk
Chapter
Part of the Abel Symposia book series (ABEL, volume 5)

Abstract

We show that for a general quadratic Poisson bracket it is possible to define a lot of associated linear Poisson brackets: linearizations of the initial bracket in the neighborhood of special points. We prove that the constructed linear Poisson brackets are always compatible with the initial quadratic Poisson bracket.

We apply the obtained results to the cases of the standard quadratic r-matrix bracket and to classical “twisted reflection algebra” brackets. In the first case we obtain that there exists only one non-equivalent linearization: the standard linear r-matrix bracket and recover well-known result that the standard quadratic and linear r-matrix brackets are compatible.We show that there are a lot of non-equivalent linearizations of the classical twisted Reflection Equation Algebra bracket and all of them are compatible with the initial quadratic bracket.

Keywords

Compatible Poisson brackets Integrable systems Classical r-matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Magri. Journal of Math Physics, 19, 1156-1162 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Bolsinov Izv. Akad. Nauk SSSR Ser. Mat. 55, 68-92 (1991).zbMATHGoogle Scholar
  3. 3.
    I.M. Gelfand, I. Zakharevich J. of Func. Anal 99, 150-157, (1991).CrossRefGoogle Scholar
  4. 4.
    I.M. Gelfand, I. Zakharevich Selecta Math. 6, no 2, 131-183, (2000).CrossRefMathSciNetGoogle Scholar
  5. 5.
    Y. Kosmann-Schwarzbach, F. Magri Ann. Inst. H. Poincare, 53, No 1, 35 (1990).zbMATHMathSciNetGoogle Scholar
  6. 6.
    Y. Kosmann-Schwarzbach, F. Magri Journal of Math. Physics, 37, 6137-6197 (1996).MathSciNetGoogle Scholar
  7. 7.
    I. Golubchik, V. Sokolov Funct Ann and Appl, 36, no 3, 172 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Gurevich, V. Rubtsov Teoret. Mat. Fiz. 103, no 3, 476-488 (1995).MathSciNetGoogle Scholar
  9. 9.
    D. Gurevich, P. Pyatov, P. Saponov Algebra i Analiz 20, no 2, 70-133 (2008).MathSciNetGoogle Scholar
  10. 10.
    E. Sklyanin preprint LOMI E-3-79 (1979).Google Scholar
  11. 11.
    M. Semenov Tian-Shansky Funct An and Apl, v 17, 259 (1983).CrossRefGoogle Scholar
  12. 12.
    E. Sklyanin, P. Kulish Zapiski LOMI, 95, 129 (1980).MathSciNetGoogle Scholar
  13. 13.
    A.A. Belavin, V. Drienfield Funct. annalysis and its appl., 16, no 3, 1-29 (1982).Google Scholar
  14. 14.
    B. Khesin, A. Levin, M. Olshanetsky Comm. Math. Phys., 250, 581-612, (2004).zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Levin, M. Olshanetsky, A. Zotov Commun. Math. Phys. 268 67-103 (2006).zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Yu. Chernyakov, A. Levin, M. Olshanetsky, A. Zotov “Quadratic algebras related to elliptic curves” nlin. SI/07101072.Google Scholar
  17. 17.
    A.A. Belavin Funct. annalysis and its appl., 14, no 4, p. 18-26, (1980).MathSciNetGoogle Scholar
  18. 18.
    E. Sklyanin Journal of Physics A. 21, 2375 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    L. Mezincesku, R. Nepomechie Journal of Physics A. 25, 2553 (1992).Google Scholar
  20. 20.
    J.M. Maillet Phys Lett B, 167, 401 (1986).CrossRefMathSciNetGoogle Scholar
  21. 21.
    O. Babelon, C.M. Viallet Phys. Lett B. 237, 411 (1990).CrossRefMathSciNetGoogle Scholar
  22. 22.
    J. Avan, M. Talon Phys. Lett. B, 241 77 (1990).CrossRefMathSciNetGoogle Scholar
  23. 23.
    T. Skrypnyk Journal of Mathematical Physics 48, no 12, 113521 (2007).CrossRefMathSciNetGoogle Scholar
  24. 24.
    A. Odesskij, V. Sokolov Journal of Mathematical Physics 47, no 1, (2006).Google Scholar
  25. 25.
    E. Sklyanin Funct. an. i ego pril. 16, no 4, 27 (1982)MathSciNetGoogle Scholar
  26. 26.
    A. Stolin Comm. Math. Phys. 141, 533 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    D. Talalaev “Quantization of the Gaudin system”, hep-th/0404153.Google Scholar
  28. 28.
    A. Molev, M. Nazarov, G. Olshansky Russ. Math. Surveys 51, 205 (1996)zbMATHCrossRefGoogle Scholar
  29. 29.
    A. Hurwitz, R. Courant Theory of functions, Springer, Berlin, 1964, 648 p.Google Scholar
  30. 30.
    A. Chervov, D. Talalaev “Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence” hep-th/0604128Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.International School for Advanced Studies, via Beirut 2-4, 34014 TriesteItaly and Bogolyubov Institute for Theoretical PhysicsKievUkraine
  2. 2.Department of Mathematics of the University of AngersFrance and Theory Division of ITEP, 25, Bol. TcheremushkinskayaMoscowRussia

Personalised recommendations