Advertisement

On Nonabelian Theories and Abelian Differentials

  • A. MarshakovEmail author
Chapter
Part of the Abel Symposia book series (ABEL, volume 5)

Abstract

I discuss integrable systems and their solutions arising in the context of supersymmetric gauge theories and topological string models. For the simplest cases these are particular singular solutions to the dispersionless KdV and Toda systems, and they produce in most straightforward way the generating functions for the Gromov-Witten classes, including well-known intersection and Hurwitz numbers, in terms of the “mirror” target-space rational complex curve. In order to generalize them to the higher genus curves, corresponding in this context to nonabelian gauge theories via the topological gauge/string duality, one has to solve a similar problem, using the Abelian differentials, generally with extra singularities at the branching points.

Keywords

Partition Function Topological String Supersymmetric Gauge Theory Toda Chain Nekrasov Partition Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten, Nucl. Phys. 340 (1990) 281; R. Dijkgraaf and E. Witten, Nucl. Phys. 342 (1990) 486.Google Scholar
  2. 2.
    V. Kac and A. Schwarz, Phys. Lett. B257 (1991) 329.MathSciNetGoogle Scholar
  3. 3.
    M. Kontsevich, Func. Anal. Apps. 25 (1991) 50; M. Kontsevich, Comm. Math. Phys. 147 (1992) 1.Google Scholar
  4. 4.
    S. Kharchev, A. Marshakov, A. Mironov, A. Morozov and A. Zabrodin, Phys. Lett. B 275 (1992) 311 [arXiv:hep-th/9111037].; Nucl. Phys. B 380 (1992) 181 [arXiv:hep-th/9201013].Google Scholar
  5. 5.
    M. Fukuma, H. Kawai and R. Nakayama, Int. J. Mod. Phys., A6 (1991) 1385; R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B348 (1991) 435.Google Scholar
  6. 6.
    M. Toda, Theory of Nonlinear Lattices, Springer, Berlin, 1981.zbMATHGoogle Scholar
  7. 7.
    A. S. Losev, A. Marshakov and N. Nekrasov, “Small instantons, little strings and free fermions,” in Ian Kogan memorial volume, M. Shifman, A. Vainshtein and J. Wheater (eds.) From fields to strings: circumnavigating theoretical physics, 581-621 [arXiv: hep-th/0302191].Google Scholar
  8. 8.
    I. Krichever, Commun. Pure. Appl. Math. 47 (1992) 437 [arXiv: hep-th/9205110].CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Marshakov and N. Nekrasov, JHEP 0701 (2007) 104 [arXiv: hep-th/0612019]; A. Marshakov, Theor. Math. Phys. 154 (2008) 362 arXiv:0706.2857 [hep-th].Google Scholar
  10. 10.
    N. Nekrasov, Adv. Theor. Math. Phys. 7 (2004) 831 [arXiv: hep-th/0206161].MathSciNetGoogle Scholar
  11. 11.
    A. Okounkov, “Toda equations for Hurwitz numbers”, arXiv: math/0004128.Google Scholar
  12. 12.
    N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,” arXiv: hep-th/0306238.Google Scholar
  13. 13.
    T. Eguchi, K. Hori and S. K. Yang, Int. J. Mod. Phys. A 10 (1995) 4203 [arXiv: hep-th/9503017].zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    E. Getzler, “The equivariant Toda lattice, I”, arXiv: math/0207025; “The equivariant Toda lattice, II”, arXiv: math/0209110.Google Scholar
  15. 15.
    A. Givental, “Gromov-Witten invariants and quantization of quadratic hamiltonians”, arXiv: math/0108100.Google Scholar
  16. 16.
    A. Okounkov and R. Pandharipande, “Gromov-Witten theory, Hurwitz theory, and completed cycles”, arXiv:math.AG/0204305; “The equivariant Gromov-Witten theory of P1”, arXiv:math.AG/0207233.Google Scholar
  17. 17.
    G. Carlet, B. Dubrovin and Y. Zhang, “The extended Toda hierarchy”, arXiv: nlin/0306060; B. Dubrovin and Y. Zhang, “Virasoro symmetries of the extended Toda hierarchy”, arXiv: math/0308152.Google Scholar
  18. 18.
    A. Marshakov, JHEP 0803 (2008) 055, arXiv:0712.2802 [hep-th].CrossRefMathSciNetGoogle Scholar
  19. 19.
    K. Saito, “On the periods of primitive integrals”, Harvard Lecture Notes, 1980; A. S. Losev, Theor. Math. Phys. 95 (1993) 595 [Teor. Mat. Fiz. 95 (1993) 307] [arXiv: hep-th/9211090]; T. Eguchi, H. Kanno, Y. Yamada and S. K. Yang, Phys. Lett. B 305 (1993) 235 [arXiv: hep-th/9302048].Google Scholar
  20. 20.
    T. Eguchi and S. K. Yang, Mod. Phys. Lett. A 9 (1994) 2893 [arXiv: hep-th/9407134].zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Theory Department, P.N. Lebedev Physics InstituteRussia and Institute of Theoretical and Experimental PhysicsMoscowRussia

Personalised recommendations