Skip to main content

Key-Private Proxy Re-encryption

  • Conference paper
Topics in Cryptology – CT-RSA 2009 (CT-RSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5473))

Included in the following conference series:


Proxy re-encryption (PRE) allows a proxy to convert a ciphertext encrypted under one key into an encryption of the same message under another key. The main idea is to place as little trust and reveal as little information to the proxy as necessary to allow it to perform its translations. At the very least, the proxy should not be able to learn the keys of the participants or the content of the messages it re-encrypts. However, in all prior PRE schemes, it is easy for the proxy to determine between which participants a re-encryption key can transform ciphertexts. This can be a problem in practice. For example, in a secure distributed file system, content owners may want to use the proxy to help re-encrypt sensitive information without revealing to the proxy the identity of the recipients.

In this work, we propose key-private (or anonymous) re-encryption keys as an additional useful property of PRE schemes. We formulate a definition of what it means for a PRE scheme to be secure and key-private. Surprisingly, we show that this property is not captured by prior definitions or achieved by prior schemes, including even the secure obfuscation of PRE by Hohenberger et al. (TCC 2007). Finally, we propose the first key-private PRE construction and prove its CPA-security under a simple extension of Decisional Bilinear Diffie Hellman assumption and its key-privacy under the Decision Linear assumption in the standard model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption (2008),

  2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved Proxy Re-encryption Schemes with Applications to Secure Distributed Storage. In: NDSS, pp. 29–43 (2005)

    Google Scholar 

  3. Ateniese, G., Hohenberger, S.: Proxy re-signatures: new definitions, algorithms, and applications. In: ACM CCS, pp. 310–319. ACM, New York (2005)

    Google Scholar 

  4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Blaze, M., Bleumer, G., Strauss, M.J.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In: ACM CCS, pp. 185–194. ACM, New York (2007)

    Google Scholar 

  9. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Hohenberger, S., Rothblum, G.N., Shelat, A., Vaikuntanathan, V.: Securely obfuscating re-encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 233–252. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Khurana, H., Heo, J., Pant, M.: From proxy encryption primitives to a deployable secure-mailing-list solution. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 260–281. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Suriadi, S., Foo, E., Smith, J.: Conditional privacy using re-encryption. In: IFIP International Workshop on Network and System Security (2008)

    Google Scholar 

  14. Taban, G., Cárdenas, A.A., Gligor, V.D.: Towards a secure and interoperable DRM architecture. In: DRM 2006, pp. 69–78. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ateniese, G., Benson, K., Hohenberger, S. (2009). Key-Private Proxy Re-encryption. In: Fischlin, M. (eds) Topics in Cryptology – CT-RSA 2009. CT-RSA 2009. Lecture Notes in Computer Science, vol 5473. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00861-0

  • Online ISBN: 978-3-642-00862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics