Skip to main content

Assessment of the Results of VLBI Intra-Technique Combination Using Regularization Methods

  • Chapter
  • First Online:
Geodetic Reference Frames

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 134))

Abstract

Various important aspects should be taken into account in the combination of different space geodetic techniques. Consistency of models and standards, quality checks of solutions from individual Analysis Centers (AC), proper scaling of these solutions within the combination process, usage of rigorous combination methods and quality checks of the final combined solution are some of those. In this study, variance component estimation (VCE) is implemented to obtain optimal scaling (weighting) factors for the VLBI (Very Long Baseline Interferometry) intra-technique combination on the basis of normal equations. Afterwards, we apply a Tikhonov-type regularization method to stabilize a combined solution by imposing additional constraints about the solution. The regularization parameters are calculated with two different methods, variance component estimation and generalized cross-validation. The results show that the use of regularization significantly reduces the effect of instability in combined normal equation systems and provides more reasonable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angermann D., et al. (2004). ITRS Combination Center at DGFI: A terrestrial Reference Frame Realization 2003, Deutsche Geodaetische Kommission, Angewandte Geodaesie, Reihe B, Heft Nr. 313.

    Google Scholar 

  • Arsenin V.Ya and Krianev A.V. (1992). Generalized maximum likelihood method and its application for solving ill-posed problems. Proceedings of the int. conference held in Moscow, 1991, pp 3-12 (1992).

    Google Scholar 

  • Baarda W. (1995). Linking up spatial models in geodesy extended S-transformations, Netherlands Geodetic Commission, Publications on Geodesy, 41.

    Google Scholar 

  • Caspary W.F. (2000). Concepts of network and deformation analysis, Monograph 11, School of Geometic Engineering, The University of New South Wales, Australia.

    Google Scholar 

  • Crocetto N., Gatti M, and Russo P. (2000). Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups. Journal of Geodesy, 74, pp. 447-457.

    Article  Google Scholar 

  • Davies P. and Blewitt G. (2000). Methodology for global geodetic time series estimation: A new tool for geodynamics, Journal of Geophysical Research, 105(B5), 11,083–11,100.

    Article  Google Scholar 

  • Drewes H. and Angermann D. (2002). Remarks on some problems in the combination of station coordinate and velocity solutions, IERS Technical Note No. 30, 30-32.

    Google Scholar 

  • Even-Tzur G. (2006). Datum definition and its influence on the reliability of geodetic networks, Zeitschrift für Geodäsie, Geoinformation und Landmanagement (zfv), 2, 87-95.

    Google Scholar 

  • Foestner W. (1979). Ein Verfahren zur Schatzung von Varianz-Kovarianz Komponenten. Allgemeine Vermessungs-Nachrichten 86:446-453.

    Google Scholar 

  • Golub G.H., Heart M., Wahba G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21:215-223.

    Article  Google Scholar 

  • Grafarend E.W., Kleusberg A., and Schaffrin B. (1980). An Introduction to the variance-covariance-component estimation of Helmert Type. Zitschrift für Vermessungswese, 105, 161-180.

    Google Scholar 

  • Grafarend E. W., Schaffrin B. (1974). Unbiased free net adjustment, Surv Rev 171:200-218.

    Google Scholar 

  • Hansen P.C. (2000). Analysis of discrete ill-posed problemy by means of the L-curve. SIAM Rev 34: 561-580.

    Article  Google Scholar 

  • Helmert F.R. (1924). Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate, 3, Auflage, Teubner, Leipzig.

    Google Scholar 

  • Koch K.R. and Kusche J. (2002). Regularization of the geopotential determination from satellite data by variance components, Journal of Geodesy, 76, 259-268.

    Article  Google Scholar 

  • Koch K.R. and Papo H.B. (2003). The Bayesian Approach in Two-Step Modelling of Deformations, AVN, 8, 365-370.

    Google Scholar 

  • Kusche J. (2003a). A Monte-Carlo technique for weight estimation in satellite geodesy, Journal of Geodesy, 76, 641-652.

    Article  Google Scholar 

  • Kusche J. (2003b). Noise variance estimation and optimal weight determination for GOCE gravity recovery, Advances in Geosciences, 1, pp.81-85.

    Article  Google Scholar 

  • Ma C. and Petrov L. (2002). SINEX File implementation in the VLBI Calc/Solve Analysis System, IERS Technical Note No. 30, 204-206.

    Google Scholar 

  • Molenaar M. (1981). A further inquiry into the theory of S-transformations and criterion matrices, Netherlands Geodetic Commission, Publications on Geodesy, 7.

    Google Scholar 

  • Rao C.R. (1973). Linear statistical inference and its applicatios. Wiley, New York.

    Book  Google Scholar 

  • Schaffrin B. (1983). Varianz-Kovarianz-Komponenten-Schaetzung bei der Ausgleichung Heterogener Wiederholungsmessungen, Series C, 282, German Geodetic Commission, Munich.

    Google Scholar 

  • Sillard P. and Boucher C. (2001). A review of algebraic constraints in terrestrial reference frame datum definition, Journal of Geodesy, 75, 63-73.

    Article  Google Scholar 

  • Tikhonov A. N. (1963). Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4 (1963), pp. 1035-1038; (English)Akad. Nauk. SSSR, 151 (1963), pp.501-504.

    Google Scholar 

  • Tikhonov A.N. and Arsenin V.Ya. (1977). Solutions of Ill-posed problems, Wiley, New York.

    Google Scholar 

  • Xu P (1997). A general solution in geodetic non-linear rank defect models, Bull Geod Sci Aff 1:1-25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanir, E., Heinkelmann, R., Schuh, H., Kusche, J., van Loon, J. (2009). Assessment of the Results of VLBI Intra-Technique Combination Using Regularization Methods. In: Drewes, H. (eds) Geodetic Reference Frames. International Association of Geodesy Symposia, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00860-3_7

Download citation

Publish with us

Policies and ethics