The Effect of Meteorological Input Data on the VLBI Reference Frames

  • R. Heinkelmann
  • J. Boehm
  • H. Schuh
  • V. Tesmer
Chapter
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 134)

Abstract

Atmosphere pressure and air temperature are input quantities for corrections applied to the observables of space geodetic techniques, such as Very Long Baseline Interferometry (VLBI) and Global Navigation Satellite Systems (GNSS). A priori troposphere zenith delay and atmosphere loading models are directly connected with the atmosphere pressure and thermal deformations of the antennas depend on temperature variations. In this study effects on the VLBI terrestrial and celestial reference frames (TRF, CRF) are investigated using atmosphere pressure and temperature from various sources: the numerical weather model (NWM) of the European Centre for Medium-Range Weather Forecasts (ECMWF), the empirical global pressure and temperature model (GPT), the Berg atmosphere model and meteorological observations acquired in-situ or in the vicinity of the site. While Vienna Mapping Functions 1 and atmosphere loading corrections are applied and kept constant during the analysis, zenith delay and thermal deformation models are considered separately. Comparing the Helmert parameters estimated between the different TRF solutions, the rotations and translations do not significantly differ when applying pressure data of various sources, but the scale varies up to 0.32 ppb. The time series of vertical station positions can show significant variations in the range of ± 5 mm. Antenna thermal deformations driven by temperature cause annual scale variations of up to 0.6 ppb. Source position differences stay at the 0.1 mas level. We recommend the application of homogeneous in-situ meteorological observations, for the determination of the TRF and in particular, zenith delay and vertical station position time series.

Keywords

Very Long Baseline Interferometry (VLBI) atmosphere pressure air temperature troposphere delay antenna thermal deformations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behrend D. and Baver K. (eds.) (2005). International VLBI Service for Geodesy and Astrometry. Annual Report 2004, NASA/TP-2005212772Google Scholar
  2. Berg H. (1948). Allgemeine Meteorologie. Dümmler, Bonn, pp 337Google Scholar
  3. Boehm J., Werl B., Schuh H. (2006a). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, Journal of Geophysical Research, Vol. 111, B02406, doi:10.1029/2005JB003629Google Scholar
  4. Boehm J., Heinkelmann R., Schuh H. (2006b). Global Pressure and Temperature (GPT): A spherical harmonic expansion of annual pressure and temperature variations for geodetic applications. Submitted to J. Geod.Google Scholar
  5. Heinkelmann R., Boehm J., Schuh H., Tesmer V. (2006). Global VLBI solution IGG05R01. Proceedings of the 4th IVS General Meeting, Concepcion (Chile), January 9-11, Behrend D. and Baver K. (eds.), NASA/CP-2006-214140, pp 4246Google Scholar
  6. Ma C., Arias E.F., Eubanks T.M., Fey A.L., Gontier A.M., Jacobs C.S., Sovers O.J., Archinal B.A., Charlot P. (1998). The International Celestial Reference Frame as realized by Very Long Baseline Interferometry. Astron. J., 116, pp 516546CrossRefGoogle Scholar
  7. Petrov L. and Boy J.-P. (2004). Study of the atmospheric pressure loading signal in Very Long Baseline Interferometry observations. J. Geophys. Res., 109, B03405, doi:10.1029/2003JB002500CrossRefGoogle Scholar
  8. Tesmer V., Boehm J., Heinkelmann R., Schuh H. (2006). Impact of analysis options on the TRF, CRF and position time series estimated from VLBI. Proceedings of the 4th IVS General Meeting, Concepcion (Chile), January 9-11, Behrend D. and Baver K. (eds.), NASA/CP2006-214140, pp 243-251Google Scholar
  9. Titov O., Tesmer V., Boehm J. (2004). OCCAM v.6.0 Software for VLBI Data Analysis. Proceedings of the 3rd IVS General Meeting, Ottawa (Canada), February 9-11, Vandenberg N. and Baver K. (eds.), NASA/CP-2004-212255, pp 267-271Google Scholar
  10. Uppala S.M., Kallberg P.W., Simmons A.J., et al. (2005) The ERA-40 Reanalysis. Quart. J.R. Meteorol. Soc., 131, doi:10.1256/qj.04.176, pp 2961-3012CrossRefGoogle Scholar
  11. Wresnik J., Haas R., Boehm J., Schuh H. (2006) Modelling thermal deformation of VLBI antennas with a new temperature model. J. Geod. (in print)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. Heinkelmann
    • 1
  • J. Boehm
    • 1
  • H. Schuh
    • 1
  • V. Tesmer
    • 2
  1. 1.Institute of Geodesy and Geophysics (IGG) Vienna University of TechnologyA-1040 ViennaAustria
  2. 2.Deutsches Geodätisches Forschungsinstitut (DGFI)D-80539 MunichGermany

Personalised recommendations