Abstract
In his legendary address to the International Congress of Mathematicians at Paris in 1900 David Hilbert asked — as the third of his twenty-three problems — to specify “two tetrahedra of equal bases and equal altitudes which can in no way be split into congruent tetrahedra, and which cannot be combined with congruent tetrahedra to form two polyhedra which themselves could be split up into congruent tetrahedra.”
Keywords
- Dihedral Angle
- Equilateral Triangle
- Convex Polytope
- Base Triangle
- Positive Integer Solution
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
V. G. Boltianskii: Hilbert’s Third Problem, V. H. Winston & Sons (Halsted Press, John Wiley & Sons), Washington DC 1978.
D. Benko: A new approach to Hilbert’s third problem, Amer. Math. Monthly, 114 (2007), 665-676.
M. Dehn: Ueber raumgleiche Polyeder, Nachrichten von der Königl. Gesellschaft der Wissenschaften, Mathematisch-physikalische Klasse (1900), 345-354.
M. Dehn: Ueber den Rauminhalt, Mathematische Annalen 55 (1902), 465-478.
C. F. Gauss: “Congruenz und Symmetrie”: Briefwechsel mit Gerling, pp. 240-249 in: Werke, Band VIII, Königl. Gesellschaft der Wissenschaften zu Göttingen; B. G. Teubner, Leipzig 1900.
D. Hilbert: Mathematical Problems, Lecture delivered at the International Congress of Mathematicians at Paris in 1900, Bulletin Amer. Math. Soc. 8 (1902), 437-479.
B. Kagan: Über die Transformation der Polyeder, Mathematische Annalen 57 (1903), 421-424.
G. M. Ziegler: Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer, New York 1995/1998.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Aigner, M., Ziegler, G.M. (2010). Hilbert’s third problem: decomposing polyhedra. In: Proofs from THE BOOK. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00856-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-00856-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00855-9
Online ISBN: 978-3-642-00856-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)