Characterizing Pure High-Order Entanglements in Lexical Semantic Spaces via Information Geometry

  • Yuexian Hou
  • Dawei Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5494)

Abstract

An emerging topic in Quantuam Interaction is the use of lexical semantic spaces, as Hilbert spaces, to capture the meaning of words. There has been some initial evidence that the phenomenon of quantum entanglement exists in a semantic space and can potentially play a crucial role in determining the embeded semantics. In this paper, we propose to consider pure high-order entanglements that cannot be reduced to the compositional effect of lower-order ones, as an indicator of high-level semantic entities. To characterize the intrinsic order of entanglements and distinguish pure high-order entanglements from lower-order ones, we develop a set of methods in the framework of Information Geometry. Based on the developed methods, we propose an expanded vector space model that involves context-sensitive high-order information and aims at characterizing high-level retrieval contexts. Some initial ideas on applying the proposed methods in query expansion and text classification are also presented.

Keywords

Information geometry Pure high-order entanglement Semantic emergence Extended vector model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salton, Gerard, Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  2. 2.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement, http://arxiv.org/abs/quant-ph/0702225
  4. 4.
    Amari, S., et al.: Method of Information Geometry. AMS series. Oxford University Press, Oxford (2000)Google Scholar
  5. 5.
    Amari, S.: Differential Geometrical Method in Statistics. Springer, Heidelberg (1985)CrossRefMATHGoogle Scholar
  6. 6.
    Amari, S.: Information Geometry on Hierarchy of Probability Distributions. IEEE Transactions on Information Theory 47, 1701–1711 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Nakahara, H., Amari, S.: Information-Geometric Measure for Neural Spikes. Neural Computation 14, 2269–2316 (2002)CrossRefMATHGoogle Scholar
  8. 8.
    Rao, C.R.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta. Math. Soc. 37 (1945)Google Scholar
  9. 9.
    Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proc. Roy. Soc., A 196 (1946)Google Scholar
  10. 10.
    Christensen, R.: Log-Linear Models and Logistic Regression. Springer, Heidelberg (1997)MATHGoogle Scholar
  11. 11.
    Orlitsky, A., Santhanam, N., Zhang, J.: Always Good-Turing: Asymptotically optimal probability estimation. Science 302Google Scholar
  12. 12.
    Bruza, P.D., Kitto, K., Nelson, D., McEvoy, C.L.: Entangling Words and Meaning. In: Proceedings of the Second Quantum Interaction Symposium, pp. 118–124. College Publications (2008)Google Scholar
  13. 13.
    Bruza, P.D., Woods, J.: Quantum Collapse in Semantic space: Interpreting Natural Language Argumentation. In: Proceedings of the Second Quantum Interaction Symposium, pp. 141–147. College Publications (2008)Google Scholar
  14. 14.
    Bruza, P.D., Cole, R.J.: Quantum Logic of Semantic Space: An Exploratory Investigation of Context Effects in Practical Reasoning. In: Artemov, S., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them: Essays in Honour of Dov Gabbay. College Publications (2005)Google Scholar
  15. 15.
    Burgess, C., Livesay, L., Lund, K.: Explorations in Context Space: Words, Sentences, Discourse. In: Foltz, P.W. (ed.) Quantitative Approaches to Semantic Knowledge Representation, Discourse Processes vol. 25(2,3), pp. 179–210 (1998)Google Scholar
  16. 16.
    Landauer, T., Dumais, S.: A Solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychological Review 104(2), 211–240 (1997)CrossRefGoogle Scholar
  17. 17.
    Widdows, D.: The Geometry of Meaning. Center for the Study of Language and Information/SRI (2004)Google Scholar
  18. 18.
    Plenio, M.B., Virmani, S.: Quant. Inf. Comp. 7, 1 (2007)Google Scholar
  19. 19.
    Eisert, J., Gross, D.: Lectures on Quantum Information. In: Bruß, D., Leuchs, G. (eds.). Wiley-VCH, Weinheim (2007)Google Scholar
  20. 20.
    Adesso, G., Illuminati1, F.: Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure, October 11 (2008), arXiv:0805.2942v2 [quant-ph]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yuexian Hou
    • 1
  • Dawei Song
    • 2
  1. 1.School of Computer Sci. & Tech.Tianjin UniversityChina
  2. 2.School of ComputingThe Robert Gordon UniversityUnited Kingdom

Personalised recommendations