Skip to main content

Information Theoretic Methods for Diffusion-Weighted MRI Analysis

  • Chapter
Emerging Trends in Visual Computing (ETVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5416))

Included in the following conference series:

Abstract

Concepts from Information Theory have been used quite widely in Image Processing, Computer Vision and Medical Image Analysis for several decades now. Most widely used concepts are that of KL-divergence, minimum description length (MDL), etc. These concepts have been popularly employed for image registration, segmentation, classification etc. In this chapter we review several methods, mostly developed by our group at the Center for Vision, Graphics & Medical Imaging in the University of Florida, that glean concepts from Information Theory and apply them to achieve analysis of Diffusion-Weighted Magnetic Resonance (DW-MRI) data.

This relatively new MRI modality allows one to non-invasively infer axonal connectivity patterns in the central nervous system. The focus of this chapter is to review automated image analysis techniques that allow us to automatically segment the region of interest in the DWMRI image wherein one might want to track the axonal pathways and also methods to reconstruct complex local tissue geometries containing axonal fiber crossings. Implementation results illustrating the algorithm application to real DW-MRI data sets are depicted to demonstrate the effectiveness of the methods reviewed.

The research was in part funded by the grant NIH EB007082.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42(1), 288–292 (1965)

    Article  Google Scholar 

  2. Basser, P., Mattiello, J., Lebihan, D.: Estimation of the Effective Self-Diffusion Tensor from the NMR Spin Echo. J. Magn. Reson. B 103, 247–254 (1994)

    Article  Google Scholar 

  3. Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford (1991)

    Google Scholar 

  4. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using dt-mri data. Magnetic Resonance in Medicine 44(4), 625–632 (2000)

    Article  Google Scholar 

  5. Wang, Z., Vemuri, B.C.: DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Transactions on Medical Imaging 24(10), 1267–1277 (2005)

    Article  Google Scholar 

  6. Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: Statistics on the manifold of Multivariate Normal Distributions: Theory and Applications to Diffusion Tensor MRI processing. J. Math. Imaging Vis. 25, 423–444 (2006)

    Article  MathSciNet  Google Scholar 

  7. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. International Journal of Computer Vision 65 (2005)

    Google Scholar 

  8. Pennec, X.: Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements. In: IEEE Workshop on Nonlinear Signal and Image Processing (1999)

    Google Scholar 

  9. Fletcher, P., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Proc. of CVAMIA, pp. 87–98 (2004)

    Google Scholar 

  10. Barmpoutis, A., Vemuri, B., Shepherd, T., Forder, J.: Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Transactions on Medical Imaging 26(11), 1537–1546 (2007)

    Article  Google Scholar 

  11. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and Simple Calculus on Tensors in the Log-Euclidean Framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 259–267. Springer, Heidelberg (2005)

    Google Scholar 

  12. Kindlmann, G., Estepar, R., Niethammer, M., Haker, S., Westin, C.F.: Geodesic-loxodromes for diffusion tensor interpolation and difference measurement. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 1–9. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron (40), 885–895 (2003)

    Article  Google Scholar 

  14. Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage 37(1), 164–176 (2007)

    Article  Google Scholar 

  15. Kumar, R., Barmpoutis, A., Vemuri, B.C., Carney, P.R., Mareci, T.H.: Multi-fiber reconstruction from DW-MRI using a continuous mixture of von mises-fisher distributions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR Workshops 2008, pp. 1–8 (June 2008)

    Google Scholar 

  16. Barmpoutis, A., Kumar, R., Vemuri, B.C., Banerjee, A.: Beyond the Lambertian assumption: A generative model for apparent BRDF fields of faces using anti-symmetric tensor splines. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–6 (June 2008)

    Google Scholar 

  17. Jian, B., Vemuri, B.C.: A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. TMI 26(11), 1464–1471 (2007)

    Google Scholar 

  18. Ozarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between DTI and HARDI. MRM 50(5), 955–965 (2003)

    Article  Google Scholar 

  19. Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors & their estimation from diffusion weighted MRI. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 308–319. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Frank, L.R.: Characterization of anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 47(6), 1083–1099 (2002)

    Article  Google Scholar 

  21. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage (2006)

    Google Scholar 

  22. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  23. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust analytical q-ball imaging. MRM 58(3), 497–510 (2007)

    Article  Google Scholar 

  24. Wassermann, D., Descoteaux, M., Deriche, R.: Diffusion maps clustering for magnetic resonance q-ball imaging segmentation. Journal of Biomedical Imaging 8(3), 1–12 (2008)

    Article  Google Scholar 

  25. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from DW-MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  26. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution

    Google Scholar 

  27. Tournier, J.D., Yeh, C.H., Calamante, F., Cho, K.H., Connelly, A., Lin, C.P.: Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. NeuroImage 42(2), 617–625 (2008)

    Article  Google Scholar 

  28. Alexander, D.C.: Maximum entropy spherical deconvolution for diffusion MRI. Inf. Process Med. Imaging, 76–87 (2005)

    Google Scholar 

  29. Wedeen, V., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y., Dai, G., Pandya, D.N., Hagmann, P., D’Arceuil, H., de Crespigny, A.J.: Diffusion spectrum magnetic resonance imaging (dsi) tractography of crossing fibers. Neuroimage 41(4), 1267–1277 (2008)

    Article  Google Scholar 

  30. Hasan, K.M., Gupta, R.K., Santos, R.M., Wolinsky, J.S., Narayana, P.A.: Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. Journal of Magnetic Resonance Imaging 21(6), 735–743 (2005)

    Article  Google Scholar 

  31. van Gelderen, P., de Vleeschouwer, M.H.M., DesPres, D., Pekar, J., van Zijl, P.C.M., Moonen, C.T.W.: Water diffusion and acute stroke. Magnetic Resonance in Medicine 31(2), 154–163 (1994)

    Article  Google Scholar 

  32. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons Inc., Chichester (2001)

    MATH  Google Scholar 

  33. Wang, Z., Vemuri, B., Chen, Y., Mareci, T.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from DWI. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 660–671. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  34. Wang, Z., Vemuri, B., Chen, Y., Mareci, T.: A Constrained Variational Principle for Direct Estimation and Smoothing of the Diffusion Tensor Field from complex DWI. TMI 23(8), 930–939 (2004)

    Google Scholar 

  35. Letac, G., Massam, H.: Quadratic and inverse regressions for Wishart distributions. Ann. Stat. 2(26), 573–595 (1998)

    MathSciNet  MATH  Google Scholar 

  36. McGraw, T., Vemuri, B.C., Yezierski, R., Mareci, T.: Von Mises-Fisher mixture model of the diffusion ODF. In: ISBI, pp. 65–68 (2006)

    Google Scholar 

  37. McGraw, T., Vemuri, B.C., Yezierski, R., Mareci, T.: Segmentation of high angular resolution diffusion MRI modeled as a field of von Mises-Fisher mixtures. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 463–475. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Bhalerao, A., Westin, C.F.

    Google Scholar 

  39. Jian, B., Vemuri, B.C.: Multi-fiber reconstruction from diffusion MRI using mixture of Wisharts and sparse deconvolution. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 384–395. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  40. Sen, P., Hürlimann, M., de Swiet, T.: Debye–Porod law of diffraction for diffusion in porous media. Phys. Rev. 51(1), 601–604 (1995)

    Article  Google Scholar 

  41. Barmpoutis, A., Vemuri, B.C., Forder, J.R.: Fast displacement probability profile approximation from hardi using 4th-order tensors. In: Proceedings of ISBI 2008: IEEE International Symposium on Biomedical Imaging, May 14-17, 2008, pp. 911–914 (2008)

    Google Scholar 

  42. Barmpoutis, A., Vemuri, B.C., Howland, D., Forder, J.R.: Extracting tractosemas from a displacement probability field for tractography in DW-MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 9–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  43. Deriche, R., Descoteaux, M.: Splitting tracking through crossing fibers: Multidirectional q-ball tracking. In: ISBI, pp. 756–759 (2007)

    Google Scholar 

  44. Söderman, O., Jönsson, B.: Restricted diffusion in cylindrical geometry. J. Magn. Reson. A (117), 94–97 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barmpoutis, A., Vemuri, B.C. (2009). Information Theoretic Methods for Diffusion-Weighted MRI Analysis. In: Nielsen, F. (eds) Emerging Trends in Visual Computing. ETVC 2008. Lecture Notes in Computer Science, vol 5416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00826-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00826-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00825-2

  • Online ISBN: 978-3-642-00826-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics