Skip to main content

From Galileo to Modern Cosmology: Alternative Paradigms and Science Boundary Conditions

  • Chapter
  • First Online:
Questions of Modern Cosmology

Abstract

This chapter develops along two main lines. On the one hand, it is dedicated to those aspects of fundamental physics in tight relationship with modern cosmology: gravitation and dynamical theories, cosmological constant, and dark matter–energy content, early Universe phases, and the problem of the fundamental constants of physics. On the other hand, we have chosen to include a discussion of the various influences affecting modern astrophysics and cosmology. In fact, the development and the solutions to the fundamental problems of physics cannot be disjoined from the social conditions in which scientists operate.

We start with a tribute to Galileo, based on an interview of historic character with Luisa Pigatto (Sect. 4.2), revisiting his times and his relationship with the cultural environment of Venice, in honor of the memory of the man who contributed so much to the development of the “scientific method,” and that, with his astronomical observations, prompted the first radical revolution of cosmological physics: the transition from the Ptolemaic paradigm to the Copernican view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar, M., Cai, R.G.: Thermodynamic behavior of field equations for f(R) Gravity. Phys. Rev. Lett. B 648, 243 (2007)

    ADS  MathSciNet  Google Scholar 

  2. Anderson, J.D., et al.: Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D 65, 082004 (2002)

    ADS  Google Scholar 

  3. Arp, H.: Catalogue of discordant redshift associations. Apeiron, Montreal, Canada, p. 234, ISBN 0968368999 (2003)

    Google Scholar 

  4. Ashenfelter, T.P., Mathews, G.J., Olive, K.A.: The chemical evolution of Mg isotopes vs. the time variation of the fine structure constant. Phys. Rev. Lett. 92, 041102 (2004)

    ADS  Google Scholar 

  5. Ashenfelter, T.P., Mathews, G.J., Olive, K.A.: The fine-structure constant as a probe of chemical evolution and AGB nucleosynthesis in damped Lyman-alpha systems. Astrophys. J. 615, 82 (2004)

    ADS  Google Scholar 

  6. Bachev, R., et al.: Average ultraviolet quasar spectra in the context of eigenvector 1: A Baldwin effect governed by the eddington ratio. Astrophys. J. 617, 171–183 (2004)

    ADS  Google Scholar 

  7. Baldwin, J.A.: Luminosity indicators in the spectra of quasi-stellar objects. Astrophys. J. 214, 679 (1977)

    ADS  Google Scholar 

  8. Barrow, J.D., Tipler, F.J.: The anthropic cosmological principle, Clarendon Press, Oxford (1986)

    Google Scholar 

  9. Barrow, J.D.: The constants of nature: From α to Ω. In: Johnatan Cape (ed.) London (2002); Transl: I numeri dell'universo, Oscar Mondadori (2003)

    Google Scholar 

  10. Baskin, A., Laor, A.: On the origin of the CIV Baldwin effect in active galactic nuclei. Mon. Not. R. Astron. Soc. 350, L31–L35 (2004)

    ADS  Google Scholar 

  11. Battistelli, E.S., et al.: Polarization observations of the anomalous microwave emission in the perseus molecular complex with the COSMOSOMAS experiment. Astrophys. J. Lett. 645, L141–L144 (2006)

    ADS  Google Scholar 

  12. Bekenstein, J.D.: Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 70, 083509 (2004)

    ADS  Google Scholar 

  13. Bekenstein, J.D.: The modified Newtonian dynamics – MOND and its implications for new physics. Contemp. Phys. 47, 387 (2006)

    ADS  Google Scholar 

  14. Bekenstein, J.D., Milgrom, M.: Does the missing mass problem signal the breakdown of Newtonian gravity? Astrophys. J. 286, 7 (1984)

    ADS  Google Scholar 

  15. Bell, M.B.: Distances of quasars and quasar-like galaxies Further: evidence that quasi-stellar objects may be ejected from active galaxies. Astrophys. J. 616, 738 (2004)

    ADS  Google Scholar 

  16. Bell, M.B.: Further evidence that the redshifts of AGN galaxies may contain intrinsic components. Astrophys. J. Lett. 667, L129 (2007)

    ADS  Google Scholar 

  17. Bender, C.M., Mannheim, P.D.: No-ghost theorem for the fourth-order derivative Pais-Uhlenbeck oscillator model. Phys. Rev. Lett. 100, 110402 (2008)

    ADS  Google Scholar 

  18. Bender, C.M.: Making sense of non-Hermitian hamiltonians. Report Prog. Phys. 70, 947–1018 (2007)

    ADS  MathSciNet  Google Scholar 

  19. Bergstrom, L., Iguri, S., Rubinstein, H.: Evolution of cosmic magnetic fields From the very early Universe, to recombination, to the present. Phys. Rev. D 60, 045005 (1999)

    ADS  Google Scholar 

  20. Berry, A.: A short history of astronomy. Murray, London (1898)

    Google Scholar 

  21. Bertolami, O., et al.: Extra force in f(R) modified theories of gravity. Phys. Rev. D 75, 104016 (2007)

    ADS  MathSciNet  Google Scholar 

  22. Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  23. Bize, S., et al.: Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock. Phys. Rev. Lett. 90, 150802 (2003)

    ADS  Google Scholar 

  24. Bondi, H.: Cosmology. Cambridge University Press, Cambridge (1961); Translation, Lampugnani Nigri (ed.), Milano, p. 150 (1970)

    MATH  Google Scholar 

  25. Bournaud, F., et al.: Missing mass in collisional debris from galaxies. Science 316, 1093 (2007)

    Google Scholar 

  26. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective action in quantum gravity. IOP Publishing, Bristol (1992)

    Google Scholar 

  27. Buchert, T.: Dark energy from structure: A status report. arXiv:0707.2153

    Google Scholar 

  28. Burkert, A.: The structure of dark matter halos in dwarf galaxies. Astroph. J. 447, L25 (1995)

    ADS  Google Scholar 

  29. Caldwell, R.R., et al.: Early quintessence in light of WMAP. Astrophys. J. 591, L75–L78 (2003)

    ADS  Google Scholar 

  30. Camerota, M.: Galileo Galilei e la cultura scientifica nell'età della Controriforma. Roma, Salerno editrice (2004)

    Google Scholar 

  31. Campbell, B.A., Olive, K.A.: Nucleosynthesis and the time dependence of fundamental couplings. Phys. Lett. B 345, 429 (1995)

    ADS  Google Scholar 

  32. Capozziello, S.: Curvature quintessence. Int. J. Mod. Phys. D 11, 483 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Capozziello, S., Francaviglia, M.: Extended theories of gravity and their cosmological and astrophysical applications. Gen. Rel. Grav. Special issue on dark energy 40, 357 (2008) [astro-ph/0706.1146]

    MathSciNet  MATH  Google Scholar 

  34. Capozziello, S., Lambiase, G.: Neutrino oscillations in Brans-Dicke theory of gravity. Mod. Phys. Lett. A 14, 2193 (1999)

    ADS  Google Scholar 

  35. Capozziello, S., Troisi, A.: Parametrized post-Newtonian limit of fourth order gravity inspired by scalar-tensor gravity. Phys. Rev. D 72, 044022 (2005)

    ADS  MathSciNet  Google Scholar 

  36. Capozziello, S., et al.: Curvature quintessence matched with observational data. Int. J. Mod. Phys. D 12, 1969 (2003)

    ADS  MathSciNet  Google Scholar 

  37. Capozziello, S., et al.: Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B 639, 135 (2006)

    ADS  Google Scholar 

  38. Capozziello, S., Cardone, V.F., Troisi, A.: Reconciling dark energy models with f(R) theories. Phys. Rev. D 71, 043503 (2005)

    ADS  Google Scholar 

  39. Capozziello, S., Cardone, V.F., Troisi, A.: Low surface brightness galaxy rotation curves in the low energy limit of Rn gravity. No need for dark matter. Mon. Not. R. Astron. Soc. 375, 1423 (2007)

    ADS  Google Scholar 

  40. Capozziello, S., Stabile, A., Troisi, A.: Newtonian limit of f(R) gravity. Phys. Rev. D 76, 104019 (2007) [arXiv:0708.0723]

    ADS  MathSciNet  Google Scholar 

  41. Capozziello, S., Stabile, A., Troisi, A.: Spherically symmetric solutions in f(R) gravity via the noether symmetry approach. Class. Quant. Grav. 24, 2153 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Capozziello, S., De Laurentis, M., Francaviglia, M.: Higher-order gravity and the cosmological background of gravitational waves. Astrop. Phys. 29, 125 (2008)

    ADS  Google Scholar 

  43. Carroll, S.M., et al.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)

    Google Scholar 

  44. Carter, B.: Large number coincidences and the anthropic principle in cosmology. In: Confrontation of cosmological theories with observation data. Longair, M., Reidel, S., (eds.), Dordrecht, pp. 291–294 (1974)

    Google Scholar 

  45. Chand, H., et al.: Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample. Astron. Astrophys. 417, 853 (2004)

    ADS  Google Scholar 

  46. Clavius, C.: Romani Calendari a Gregorio XIII P. M. Restituti Explicatio S. D. N. Clementis VIII P.M. iussu edita, Romae, Aloysium Zanettum, pp. 39, 96–97 (1603)

    Google Scholar 

  47. Clowe, D., et al.: A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648, L109 (2006)

    ADS  Google Scholar 

  48. Coc, A., et al.: Coupled variations of fundamental couplings and primordial nucleosynthesis. Phys. Rev. D 76, 023511 (2007)

    ADS  Google Scholar 

  49. Cole, S., et al.: The 2dF galaxy redshift survey: Power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505 (2005)

    ADS  Google Scholar 

  50. Coles, P., Lucchin, F.: Cosmology, the origin and evolution of cosmic structure. Wiley, New York (1995)

    MATH  Google Scholar 

  51. Combes, F., et al.: Galaxies and cosmology. Springer, Berlin, Heidelberg (1995)

    Google Scholar 

  52. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  53. Cozzi, G.: Paolo Sarpi tra Venezia e l'Europa. Torino, Einaudi (1979)

    Google Scholar 

  54. Cyburt, R.H., et al.: New BBN limits on physics beyond the standard model from He-4. Astropart. Phys. 23, 313 (2005)

    ADS  Google Scholar 

  55. Dallaporta, N.: Scienza e Metafisica, uno pseudo contrasto fra due domini complementari, Cedam (1997)

    Google Scholar 

  56. Dallaporta, N., Secco, L.: Il Principio Antropico in fisica ed in cosmologia, Giornale di Fisica XXXIV, N.3, 163 (1993)

    Google Scholar 

  57. Daly, R.A., Djorgovsky, S.G.: Direct determination of the kinematics of the universe and properties of the dark energy as functions of redshift. Astrophys. J. 612, 652 (2004)

    ADS  Google Scholar 

  58. Davies, R.D., et al.: Sensitive measurement of fluctuations in the cosmic microwave background. Nature 326, 462–465 (1987)

    ADS  Google Scholar 

  59. de Bernardis, P., et al.: A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    ADS  Google Scholar 

  60. de Blok, W.J.G., Bosma, A.: High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys. 385, 816 (2002)

    ADS  Google Scholar 

  61. Dent, T., Stern, S., Wetterich, C.: Primordial nucleosynthesis as a probe of fundamental physics parameters. Phys. Rev. D 76, 063513 (2007)

    ADS  Google Scholar 

  62. Dickinson, C., et al.: High-sensitivity measurements of the cosmic microwave background power spectrum with the extended very small array. Mon. Not. R. Astron. Soc. 353, 732–746 (2004)

    ADS  Google Scholar 

  63. Dirac, P.A.M.: The cosmological constants. Nature 139, 323 (1937)

    ADS  MATH  Google Scholar 

  64. Dmitriev, V.F., Flambaum, V.V., Webb, J.K.: Cosmological variation of the deuteron binding energy, strong interaction, and quark masses from big bang nucleosynthesis. Phys. Rev. D 69, 063506 (2004)

    ADS  Google Scholar 

  65. Dobrzycki, J.: Astronomical aspects of the calendar Reform. In: Gregorian reform of the calendar. Proceedings of the Vatican Conference to commemorate its 400th anniversary, pp. 1582–1982

    Google Scholar 

  66. Dodelson, S., Liguori, M.: Can cosmic structure form without dark matter? Phys. Rev. Lett. 97, 231301 (2006)

    ADS  Google Scholar 

  67. Dolgov, A.D.: An attempt to get rid of the cosmological constant. In: The very early universe. Gibbons, G.W.et al. (eds.) Cambridge University Press, p. 449 (1983)

    Google Scholar 

  68. Doran, M., Schwindt, J.M., Wetterich, C.: Structure formation and the time dependence of quintessence. Phys. Rev. D 64, 123520 (2001)

    ADS  Google Scholar 

  69. Drake, S.: Galileo. Una biografia scientifica. Bologna, Il Mulino (1988)

    Google Scholar 

  70. Duff, M.J., Okun, L.B., Veneziano, G.: Trialogue on the number of fundamental constants. JHEP 0203, 023 (2002)

    ADS  MathSciNet  Google Scholar 

  71. Dvali, G., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D minkowski space. Phys. Lett. B 485, 208 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Dyson, F.J.: Aspects of quantum theory. Salam, A., Wigner, E.P. (eds.), Cambridge University Press, Cambridge, p. 213 (1972)

    Google Scholar 

  73. Eisenstein, D.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  74. Fabrici d'Acquapendente, G.: De Visione, Voce, Auditu, Venetiis, per Franciscum Bolzettam, p. 93 (1600)

    Google Scholar 

  75. Favaro, A.: Galileo Galilei e lo Studio di Padova, 2 vols., Firenze, Successori Le Monnier (1883) and reprint, Padova, editrice Antenore (1966)

    Google Scholar 

  76. Favaro, A.: Le Opere di Galileo Galilei, 20 vols., Firenze, Barbera (1890–1907)

    Google Scholar 

  77. Favaro, A.: Amici e corrispondenti di Galileo. XL. Giuseppe Moletti. Atti del reale Istituto di SS, LL. e AA., 77, pp. 48–118 (1917–1918)

    Google Scholar 

  78. Favaro, A.: Galileo Galilei a Padova, Padova, Antenore (1968)

    Google Scholar 

  79. Favaro, A.: Scampoli galileiani. Rossetti, L., Soppelsa, M.L. (eds.), 2 vols., Trieste, ed. Lint (1992)

    Google Scholar 

  80. Favaro, A.: Adversaria Galilaeiana. Rossetti, L., Soppelsa, M.L. (eds.), 2 vols., Trieste, ed. Lint (1992)

    Google Scholar 

  81. Ferland, G., Baldwin, J.: Quasars and cosmology. ASP Conf. Ser. 162 (1999)

    Google Scholar 

  82. Ferris, T.: The red limit. The search for the edge of the universe. William Morrow, New York (1977); Quill, New York (1983) 2nd ed. revised and updated

    Google Scholar 

  83. Fischer, M., et al.: New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett. 92, 230802 (2004)

    ADS  Google Scholar 

  84. Fujii, Y., et al.: The nuclear interaction at Oklo 2 billion years ago. Nucl. Phys. B 573, 377 (2000)

    ADS  Google Scholar 

  85. Efstathiou, G., Sutherland, W.J., Maddox, S.J.: The cosmological constant and cold dark matter. Nature 348, 705 (1990)

    ADS  Google Scholar 

  86. Einstein, A.: Ideas and opinions. Laurel Edition, 285 (1978)

    Google Scholar 

  87. Galilei, G.: Due lezioni all'Accademia fiorentina circa la figura, sito e grandezza dell'inferno di Dante Alighieri. In: Opere, ix. Firenze (1587–1588)

    Google Scholar 

  88. Galilei, G.: Sidereus Nuncius, In: Opere, iii, p. 6. Tomaso Baglioni ed. Venezia (1610)

    Google Scholar 

  89. Galilei, G.: Il Saggiatore, In: Opere, vi. Giacomo Mascardi, Roma (1623)

    Google Scholar 

  90. Galilei, G.: Dialogo. In: Opere, vii, pp. 150–151. Giovan Batista Landini ed. Firenze (1632)

    Google Scholar 

  91. Galilei, G.: Discorsi. In: Opere, viii, p. 7. Leida Elzeviri (1638)

    Google Scholar 

  92. Génova-Santos, R,.et al.: A very small array search for the extended Sunyaev-Zel'dovich effect in the Corona Borealis supercluster. Mon. Not. R. Astron. Soc. 363, 79–92 (2005)

    ADS  Google Scholar 

  93. Griselini, F.: Del genio di F. Paolo Sarpi. Venezia, appresso Leonardo Bassagli, ii, pp. 70–71 (1785)

    Google Scholar 

  94. Génova-Santos, R., et al.: A very small array search for the extended Sunyaev-Zel'dovich effect in the Corona Borealis supercluster. Mon. Not. R. Astron. Soc. 363, 79–92 (2005)

    ADS  Google Scholar 

  95. Gentile, G., et al.: Tidal dwarf galaxies as a test of fundamental physics. Astron. Astrophys. 472, L25 (2007)

    ADS  Google Scholar 

  96. Geymonat, L.: Galileo Galilei. Torino, Einaudi (1980)

    Google Scholar 

  97. Gilbert, W.: De magnete magneticisque corporibus et de magno magnete tellure physiologia nova, plurimis et argumentis et experimentis demonstrata. Londini, excudebat Petrus Short, anno 1600

    Google Scholar 

  98. Gingerich, O.: God's universe. Belknap Pressof Harvard University Press, Cambridge, MA (2006); Transl: Cercando Dio nell'universo. Lindau ed. (2007)

    Google Scholar 

  99. Grainge, K., et al.: The cosmic microwave background power spectrum out to l = 1400 measured by the very small array. Mon. Not. R. Astron. Soc. 341, L23–L28 (2003)

    ADS  Google Scholar 

  100. Granett, B.R., Neyrinck, M., Szapudi, I.: An imprint of Super-Structures on the microwave background due to the integrated Sachs–Wolfe effect (2008) [arXiv:0805.3695]

    Google Scholar 

  101. Guth, A.H.: Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)

    ADS  Google Scholar 

  102. Hancock, S., et al.: Direct observation of structure in the cosmic microwave background. Nature 367, 333 (1994)

    ADS  Google Scholar 

  103. Harrison, D.L., et al.: A measurement at the first acoustic peak of the cosmic microwave background with the 33-GHz interferometer. Mon. Not. R. Astron. Soc. 316, L24–L28 (2000)

    ADS  Google Scholar 

  104. Hellings, R.W., et al.: Experimental test of the variability of G using Viking lander ranging data. Phys. Rev. Lett. 51, 1609 (1983)

    ADS  Google Scholar 

  105. Hildebrandt, S.R., et al.: COSMOSOMAS observations of the cosmic microwave background and galactic foregrounds at 11 GHz: Evidence for anomalous microwave emission at high galactic latitude. Mon. Not. R. Astron. Soc. 382, 594–608 (2007)

    ADS  Google Scholar 

  106. Hoyle, F.: A new model for the expanding universe. Mon. Not. R. Astron. Soc. 108, 372 (1948)

    ADS  MATH  Google Scholar 

  107. Hoyle, F.: Religions and the scientists. SCM press, London (1959)

    Google Scholar 

  108. Hoyle, F.: Il principio antropico e il principio cosmologico perfetto: Somiglianze e differenze. In: Il principio antropico. A cura di B. Giacomini, (ed). Spazio Libri Editori, p. 37 (1991)

    Google Scholar 

  109. Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168 (1929)

    ADS  MATH  Google Scholar 

  110. Ichikawa, K., Kawasaki, M.: Constraining the variation of the coupling constants with big bang nucleosynthesis. Phys. Rev. D 65, 123511 (2002)

    ADS  Google Scholar 

  111. Ichikawa, K., Kawasaki, M.: Big bang nucleosynthesis with a varying fine structure constant and nonstandard expansion rate. Phys. Rev. D 69, 123506 (2004)

    ADS  Google Scholar 

  112. Jassal, H.K., Bagla, J.S., Padmanabhan, T.: WMAP constraints on low redshift evolution of dark energy. Mon. Not. R. Astron. Soc. 356, L11–L16 (2005) [astro-ph/0404378]

    ADS  Google Scholar 

  113. Jha, S., Riess, A.G., Kirshner, R.P.: Improved distances to type Ia supernovae with multicolor light-curve shapes: MLCS2k2. Astrophys. J. 659, 122 (2007)

    ADS  Google Scholar 

  114. Jones, M.H., Lambourne, R.J.: An introduction to galaxies and cosmology. The open University, Cambridge University Press, Cambridge (2003)

    Google Scholar 

  115. Kalberla, P.M.W., et al.: Dark matter in the Milky Way. II. The HI gas distribution as a tracer of the gravitational potential. Astron. Astrophys. 469, 511 (2007)

    ADS  Google Scholar 

  116. Kapteyn, J.C.: First attempt at a theory of the arrangement and motion of the sidereal system. Astrophys. J. 55, 302 (1922)

    ADS  Google Scholar 

  117. Kashikawa, N. et al.: SUBARU deep Survey. III. Evolution of rest-frame luminosity functions based on the photometric redshift for a K-band selected galaxy sample. Astron. J. 125, 53 (2003)

    ADS  Google Scholar 

  118. Kolb, E.W., Perry, M.J., Walker, T.P.: Time variation of fundamental constants, primordial nucleosynthesis, and the size of extra dimensions. Phys. Rev. D 33, 869 (1986)

    ADS  Google Scholar 

  119. Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without Dark Energy. New J. Phys. 8, 322 (2006)

    ADS  Google Scholar 

  120. Kothawala, D., et al.: Einstein's equations as a thermodynamic identity: The cases of stationary axisymmetric horizons and evolving spherically symmetric horizons. Phys. Letts, B 652, 338 (2007) [gr-qc/0701002].

    ADS  MathSciNet  Google Scholar 

  121. Lahav, O., et al.: The 2dF galaxy redshift survey: The amplitudes of fluctuations in the 2dF-GRS and the CMB, and implications for galaxy biasing. Mon. Not. R. Astron. Soc. 333, 961 (2002)

    ADS  Google Scholar 

  122. Layzer, D.: The arrow of time. Astrophys. J. 206, 559 (1976)

    ADS  MathSciNet  Google Scholar 

  123. Liddle, A.R., Scherrer, R.J.: Classification of scalar field potentials with cosmological scaling solutions. Phys. Rev. D 59, 023509 (1999)

    ADS  Google Scholar 

  124. Linder, E.V.: Exploring the expansion history of the universe. Phy. Rev. Lett. 90, 091301 (2003)

    ADS  Google Scholar 

  125. Linder, E.V., Jenkins, A.: Cosmic structure and dark energy. Mon. Not. Roy. Astron. Soc. 346, 573 (2003)

    ADS  Google Scholar 

  126. Longair, M.S.: Galaxy formation, 2nd ed., Springer, Berlin (2008)

    Google Scholar 

  127. Lugmair, G.W., Galer, S.J.G.: Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra DOS Reis. Geochim. Cosmochim. Acta 56, 1673 (1992)

    ADS  Google Scholar 

  128. Magnano, G., Ferraris, M., Francaviglia, M.: Nonlinear gravitational Lagrangians. Gen. Rel. Grav. 19, 465 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  129. Mannheim, P.D.: Conformal cosmology with no cosmological constant. Gen. Rel. Gravit. 22, 289–298 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  130. Mannheim, P.D.: Conformal gravity and the flatness problem. Astrophys. J. 391, 429–432 (1992)

    ADS  Google Scholar 

  131. Mannheim, P.D.: Alternatives to dark matter and dark energy. Prog. Part. Nucl. Phys. 56, 340–445 (2006)

    ADS  Google Scholar 

  132. Mannheim, P.D., Kazanas, D.: Exact vacuum solution to conformal weyl gravity and galactic rotation curves. Astrophys. J. 342, 635–638 (1989)

    ADS  MathSciNet  Google Scholar 

  133. Marion, H., et al.: Search for variations of fundamental constants using atomic fountain clocks. Phys. Rev. Lett. 90, 150801 (2003)

    ADS  Google Scholar 

  134. McGaugh, S.S.: The baryonic Tully-Fisher relation of galaxies with extended rotation curves and the stellar mass of rotating galaxies. Astroph. J. 632, 859 (2005)

    ADS  Google Scholar 

  135. McGaugh, S.S.: Observational constraints on the acceleration discrepancy problem (2006) [astro-ph/0606351]

    Google Scholar 

  136. Micanzio, F.: Vita di Paolo Sarpi, Teologo e Consultore della Serenissima Repubblica di Venezia, frate dell'Ordine dei Servi. Milano, per Giovanni Silvestri, (1824), 58; the on-line edition Fulgenzio Micanzio, Vita del Padre Paolo, ed. Corrado Vivanti, is available at www.liberliber.it, Manuzio Project

  137. Mihalas, D., Binney, J.: Galactic astronomy. W.H. Freeman, San Francisco (1968)

    Google Scholar 

  138. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983)

    ADS  Google Scholar 

  139. Milgrom, M.: A modification of the Newtonian dynamics – implications for galaxies. Astrophys. J. 270, 371–383 (1983)

    ADS  Google Scholar 

  140. Milgrom, M.: A modification of the Newtonian dynamics – implications for galaxy systems. Astrophys. J. 270, 384–389 (1983)

    ADS  Google Scholar 

  141. Milgrom, M.: Dynamics with a nonstandard inertia-acceleration relation: An alternative to dark matter in galactic systems. Ann. Phys. 229, 384 (1994)

    ADS  Google Scholar 

  142. Milgrom, M.: The modified dynamics as a vacuum effect. Phys. Lett. A 253, 273 (1999)

    ADS  Google Scholar 

  143. Milgrom, M.: The shape of dark matter haloes of disc galaxies according to MOND. Mon. Not. R. Astron. Soc. 326, 1261 (2001)

    ADS  Google Scholar 

  144. Milgrom, M.: MOND and the mass discrepancies in tidal dwarf galaxies. Astrophys. J. Lett. 667, L45 (2007)

    ADS  Google Scholar 

  145. Milgrom, M.: The MOND paradigm. In: Proceedings XIX Rencontres de Blois (2008) [arXiv:0801.3133M]

    Google Scholar 

  146. Moffat, J.W.: A modified gravity and its consequences for the solar system, astrophysics and cosmology. Int. J. Mod. Phys. D J. Exp. Theor. Phys. 16, 2075–2090 (2007)

    ADS  Google Scholar 

  147. Mukhopadhyay, A., Padmanabhan, T.: Holography of gravitational action functionals. Phys. Rev. D 74, 124023 (2006) [hep-th/0608120]

    ADS  MathSciNet  Google Scholar 

  148. Muller, C.M., Schafer, G., Wetterich, C.: Nucleosynthesis and the variation of fundamental couplings. Phys. Rev. D 70, 083504 (2004)

    ADS  Google Scholar 

  149. Murphy, M.T., Webb, J.K., Flambaum, V.V.: Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra. Mon. Not. R. Astron. Soc. 345, 609 (2003)

    ADS  Google Scholar 

  150. Murphy, M.T., Webb, J.K., Flambaum, V.V.: Comment on limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. Phys. Rev. Lett. 99, 239001 (2007)

    ADS  Google Scholar 

  151. Navarro, J.F., Frenk, C.S., White, S.D.M.: The structure of cold dark matter halos. Astrophys. J. 462 563–575 (1996)

    ADS  Google Scholar 

  152. Navarro, J.F., Frenk, C.S., White, S.D.M.: A universal density profile from hierarchical clustering. Astrophys J. 490, 493–508 (1997)

    ADS  Google Scholar 

  153. Nieto, M.M., Anderson, J.D.: Search for a solution of the pioneer anomaly. Contemp. Phys. 48, 41 (2007)

    ADS  Google Scholar 

  154. Nollett, K.M., Lopez, R.E.: Primordial nucleosynthesis with a varying fine structure constant: An improved estimate. Phys. Rev. D 66, 063507 (2002)

    ADS  Google Scholar 

  155. Okun, L.B.: The fundamental constants of physics. Usp. Fiz. Nauk 161, 177 (1991)

    Google Scholar 

  156. Olive, K.A., et al.: Constraints on the variations of the fundamental couplings. Phys. Rev. D 66, 045022 (2002)

    ADS  Google Scholar 

  157. Olive, K.A., et al.: Reexamination of 187Re bound. Phys. Rev. D 69, 027701 (2004)

    ADS  Google Scholar 

  158. Olmo, G.J.: The gravity lagrangian according to solar system experiments. Phys. Rev. Lett. 95, 261102 (2005)

    ADS  Google Scholar 

  159. Ortolan, A., Secco, L.: II Principio Antropico fra il dominio della scienza e quello della filosofia. Giomale di Fisica, XXXVII, N.4, 243 (1996)

    Google Scholar 

  160. Padmanabhan, T.: Gravitational field of the quantized electromagnetic plane wave. Gen. Rel. Grav. 19, 927 (1987)

    ADS  MathSciNet  Google Scholar 

  161. Padmanabhan, T.: Quantum structure of spacetime and entropy of schwarschild black holes. Phys. Rev. Letts. 81, 4297 (1998) [hep-th/9801015]

    ADS  Google Scholar 

  162. Padmanabhan, T.: Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Classical Quant. Grav. 19, 5387, (2002) [gr-qc/0204019]

    ADS  MathSciNet  MATH  Google Scholar 

  163. Padmanabhan, T.: Cosmological constant-the weight of the vacuum. Phys. Rept. 380, 235 (2003) [hep-th/0212290]

    ADS  MathSciNet  MATH  Google Scholar 

  164. Padmanabhan, T.: Vacuum fluctuations of energy density can lead to the observed cosmological constant. Classical Quant. Grav. 22, L107 (2005) [hep-th/0406060]

    ADS  MathSciNet  MATH  Google Scholar 

  165. Padmanabhan, T.: Gravity and the thermodynamics of horizons. Phys. Rept. 406, 49 (2005) [gr-qc/0311036]

    ADS  MathSciNet  Google Scholar 

  166. Padmanabhan, T.: Dark energy: Mystery of the millennium. AIP Conf. Proc. 861, 179 (2006) [astro-ph/0603114]

    Google Scholar 

  167. Padmanabhan, T.: Gravity's immunity from vacuum: The holographic structure of semiclassical action. Third prize essay; Gravity Essay Contest 2006 Gen. Rel. Grav. 38, 1547–1552 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  168. Padmanabhan, T.: Gravity as an emergent phenomenon: A conceptual description. AIP Conf. Proc. 989, 114 (2007) [arXiv:0706.1654]

    ADS  Google Scholar 

  169. Padmanabhan, T.: Dark energy and gravity. Gen. Rel. Grav. 40, 529 (2008) [arXiv:0705.2533]

    ADS  MathSciNet  MATH  Google Scholar 

  170. Padmanabhan, T., Choudhury, T.R.: The issue of choosing nothing. Mod. Phys. Lett. A 15, 1813 (2000) [gr-qc/0006018]

    ADS  Google Scholar 

  171. Padmanabhan, T., Choudhury, T.R.: A theoretician's analysis of the supernova data and the limitations in determining the nature of dark energy. Mon. Not. R. Astron. Soc. 344, 823 (2003) [astro-ph/0212573]

    ADS  Google Scholar 

  172. Pais, A., Uhlenbeck, G.E.: On field theories with non-localized action. Phys. Rev. 79, 145–165 (1950)

    ADS  MathSciNet  MATH  Google Scholar 

  173. Pastore-Stocchi, M.: Il periodo veneto di Galileo Galilei. In: Storia della Cultura veneta, iv, t. ii, pp. 37–66 (1984)

    Google Scholar 

  174. Pecchioli, R.: Introduzione. In: Paolo Sarpi, Istoria del Concilio Tridentino. Firenze, Sansoni editore, pp. xiii-xiv (1982)

    Google Scholar 

  175. Peacock, J.A., Cole, S., Norberg, P.: A measurement of the cosmological mass density from clustering in the 2dF galaxy redshift survey. Nature 410, 169 (2001)

    ADS  Google Scholar 

  176. Peacock, J.A.: Cosmological physics, Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  177. Peebles, P.J.E., Dicke, R.H.: Cosmology and the radioactive decay ages of terrestrial rocks and meteorites. Phys. Rev. 128, 2006 (1962)

    ADS  Google Scholar 

  178. Percival, W.J., et al.: Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra. Mon. Not. Roy. Astron. Soc. 37, 1068 (2002)

    ADS  Google Scholar 

  179. Percival, W.J., et al.: Measuring the matter density using baryon oscillations in the SDSS. Astrophys. J. 657, 51 (2007)

    ADS  Google Scholar 

  180. Percival, W.J. et al.: Measuring the baryon acoustic oscillation scale using the SDSS and 2dFGRS. Mon. Not. Roy. Astron. Soc. 381, 1053 (2007)

    ADS  Google Scholar 

  181. Perlmutter, S., et al.: Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z ≥ 0.35. Astrophys. J. 483, 565 (1997)

    ADS  Google Scholar 

  182. Perlmutter, S. et al.: Discovery of a supernova explosion at half the age of the universe. Nature 391, 51 (1998)

    ADS  Google Scholar 

  183. Perlmutter, S.J., et al.: Measurements of Ω and β from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    ADS  Google Scholar 

  184. Quast, R., Reimers, D., Levshakov, S.A.: Probing the variability of the fine-structure constant with the VLT UVES. Astron. Astrophys. 415, L7 (2004)

    ADS  Google Scholar 

  185. Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    ADS  Google Scholar 

  186. Rebolo, R., et al.: Cosmological parameter estimation using very small array data out to l = 1500. Mon. Not. R. Astron. Soc. 353, 747–759 (2004)

    ADS  Google Scholar 

  187. Rees, M.J.: Just six numbers. Basic Books, New York (2000). Transl: I sei numeri dell'universo. Rizzoli (2002)

    MATH  Google Scholar 

  188. Reeves, H.: La crescita della complessita' in un universo in espansione. p. 61. In: Il principio antropico. a cura di B. Giacomini, ed. Spazio Libri Editori (1991)

    Google Scholar 

  189. Renn, J., Valleriani, M.: Galileo and the challenge of the arsenal. In: Letture Galileiane. Florence, 21 March 2001 (online edition)

    Google Scholar 

  190. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    ADS  Google Scholar 

  191. Riess, A.G., et al.: Type Ia supernova discoveries at z > 1 from the hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004)

    ADS  Google Scholar 

  192. Righini, G.: Contributo alla interpretazione scientifica dell'opera astronomica di Galileo. Suppl. Annali dell'Istituto e Museo di Storia della Scienza, fasc. 2, Firenze, 1978

    Google Scholar 

  193. Rocha, G., et al.: New constraints on varying alpha. New Astron. Rev. 47, 863 (2003)

    ADS  Google Scholar 

  194. Roy, S., Kafatos, M., Datta, S.: Shift of spectral lines due to dynamic multiple scattering and screening effect: Implications for discordant redshifts. Astron. Astrophys. 353, 1134 (2000)

    ADS  Google Scholar 

  195. Sakharov, A.D.: Vacuum quantum fluctuations in curved space and theory of gravitation. Sov. Phys. Dokl. 12, 1040 (1968)

    ADS  Google Scholar 

  196. Sanders, R.H.: Modified gravity without dark matter. In: The invisible universe: Dark matter and dark energy. Third Aegean Summer School. (2006) [arXiv:astro-ph/0601431]

    Google Scholar 

  197. Sanders, R.H., McGaugh, S.S.: Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 40, 263 (2002)

    ADS  Google Scholar 

  198. Sarpi, P.: Lettere di fra Paolo Sarpi, ed. Filippo L. Polidori, preface of Filippo Perfetti, Firenze, G. Barbera ed. (1863)

    Google Scholar 

  199. Sarpi, P.: Lettere ai Gallicani. Boris Ulianich (ed.), F. Steiner, Wiesbaden (1961)

    Google Scholar 

  200. Sarpi, P.: Istoria dell'interdetto. Corrado Pin (ed.), introduction by William Shea, Conselve, Ed THINK ADV. (2006)

    Google Scholar 

  201. Sánchez-Salcedo, F.J., Saha, K., Narayan, C.A.: The thickness of HI in galactic discs under MOdified Newtonian Dynamics: Theory and application to the Galaxy. Mon. Not. R. Astron. Soc. 385, 1585 (2007) [arXiv:0712.0816]

    Google Scholar 

  202. Scarpa, R.: Modified Newtonian dynamics, an introductory review. In: First crisis in cosmology. E.J. Lerner, J.B. Almeida (eds.) (2006) [astro-ph/0601478]

    Google Scholar 

  203. Scott, P.F., et al.: First results from the very small array. III. The cosmic microwave background power spectrum. Mon. Not. R. Astron. Soc. 341, 1076–1083 (2003)

    ADS  Google Scholar 

  204. Scranton, R., et al.: Physical evidence for dark energy. [astro-ph/0307335v2] (2003)

    Google Scholar 

  205. Secco, L.: Oltre la quantità. In: “Un futuro per l'Uomo”. Gabrielli Ed. (2005)

    Google Scholar 

  206. Seljak, U. et al.: Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. D 71, 103515 (2005)

    ADS  Google Scholar 

  207. Shea, W.R., Artigas, M.: Galileo in Rome. The rise and fall of a troublesome genius. Oxford University Press, Oxford, 2003

    Google Scholar 

  208. Shlyakhter, A.I.: Direct test of the constancy of fundamental nuclear constants. Nature 264, 340 (1976)

    ADS  Google Scholar 

  209. Skordis, C., et al.: Large scale structure in Bekenstein's theory of relativistic modified Newtonian dynamics. Phys. Rev. Lett. 96, 011301 (2006)

    ADS  Google Scholar 

  210. Smoliar, M.I., Walker, R.J., Morgan, J.W.: Re-Os Ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271, 1099 (1996)

    ADS  Google Scholar 

  211. Smolin, L.: Three roads to quantum gravity. Basic Books, New York (2001)

    MATH  Google Scholar 

  212. Smolin, L.: The trouble with physics. Houghton Mifflin Harcourt (2006)

    MATH  Google Scholar 

  213. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38 (1947)

    ADS  MathSciNet  MATH  Google Scholar 

  214. Sotiriou, T.P., Liberati, S.: Metric-affine f(R) theories of gravity. Ann. Phys. 322, 935 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  215. Spergel, D.N., et al.: Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    ADS  Google Scholar 

  216. Srianand, R., et al.: Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars. Phys. Rev. Lett. 92, 121302 (2004)

    ADS  Google Scholar 

  217. Srianand, R., et al.: Replay. Phys. Rev. Lett. 99, 239002 (2007)

    ADS  Google Scholar 

  218. Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99 (1980)

    ADS  Google Scholar 

  219. Steinhardt, P.J., Wang, L., Zlatev, I.: Cosmological tracking solutions. Phys. Rev. D 59, 123504 (1999)

    ADS  Google Scholar 

  220. tHooft, G.: The mathematical basis for deterministic quantum mechanics. In: Beyond the quantum, Th. M. Nieuwenhuizenet al (eds.), World Scientific, Singapore, pp. 3 - 19 [quant-ph/0604008]

    Google Scholar 

  221. 'tHooft, G.: Emergent quantum mechanics and emergent symmetries, PASCOS 13, London, [hep-th/0707.4568]

    Google Scholar 

  222. Tegmark, M., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  223. Ulianich, B.: Saggio introduttivo. In: Paolo Sarpi, Lettere ai Gallicani. Boris Ulianich (ed.), Wiesbaden, F. Steiner, 1961

    Google Scholar 

  224. Uzan, J.P.: The fundamental constants and their variation: Observational status and theoretical motivations. Rev. Mod. Phys. 75, 403 (2003)

    ADS  MathSciNet  Google Scholar 

  225. Watson, R.A., et al.: Detection of anomalous microwave emission in the Perseus molecular cloud with the COSMOSOMAS experiment. Astrophys. J. 624, L89–L92 (2005)

    ADS  Google Scholar 

  226. Webb, J.K., et al.: Evidence for time variation of the fine structure constant. Phys. Rev. Lett. 82, 884 (1999)

    ADS  Google Scholar 

  227. Weinberg, S.: Anthropic bound on the cosmological constant. Phys. Rev. Lett. 9, 2607–2610 (1987)

    ADS  Google Scholar 

  228. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys 61, 1–23 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  229. Wetterich, C.: Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    ADS  Google Scholar 

  230. Will, C.M.: The Confrontation between general relativity and experiment. Living reviews in relativity, 9, http://www.livingreviews.org/lrr-2006-3

  231. White, S.D.M.: Fundamentalist physics: Why dark energy is bad for astronomy. Report Prog. Phys. 70, 883 (2007)

    ADS  Google Scholar 

  232. Zhang, P.: Testing gravity against the early time integrated Sachs-Wolfe effect. Phys. Rev. D 73, 123504 (2006)

    ADS  Google Scholar 

  233. Zhou, J., et al.: The generalized second law of thermodynamics in the accelerating universe. (2007) [arXiv:0705.1264]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Burigana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burigana, C. et al. (2009). From Galileo to Modern Cosmology: Alternative Paradigms and Science Boundary Conditions. In: D'Onofrio, M., Burigana, C. (eds) Questions of Modern Cosmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00792-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00792-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00791-0

  • Online ISBN: 978-3-642-00792-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics