Skip to main content

Astrophysical Cosmology

  • Chapter
  • First Online:
Questions of Modern Cosmology

Abstract

The previous chapter was devoted to the main observational evidence on the basis of our comprehension of the Universe and to their main theoretical implications. Some theoretical and phenomenological topics of particular relevance for current cosmology with clear observational counterparts are rediscussed here, with a better attention to the corresponding concepts of fundamental physics and, to a certain extent, to the mathematical formalism at the basis of their formulation.

The presentation of the various themes is organized almost according to their relevance at increasing cosmic time, although the physical processes considered and the propagation of the generated photons to the observer occurred during various cosmic epochs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aalseth, C.E., et al.: Neutrinoless double-β decay of 76 Ge: First results from the International Germanium Experiment (IGEX) with six isotopically enriched detectors. Phys. Rev. C 59, 2108 (1999)

    Google Scholar 

  2. Abazajian, K.N., Beacom, J.F., Bell, N.F.: Stringent constraints on cosmological neutrino-antineutrino asymmetries from synchronized flavor transformation. Phys. Rev. D 66, 013008 (2002)

    Google Scholar 

  3. Adelman-McCarthy, J.K., et al.: The sixth data release of the sloan digital sky survey. Astrophys. J. Suppl. Ser. 175, 297–313 (2008)

    Google Scholar 

  4. Aguilar-Arevalo, A.A., et al.: Search for electron neutrino appearance at the Δm 2 1 eV2 scale. Phys. Rev. Lett. 98, 231801 (2007)

    Google Scholar 

  5. Albrecht, A.: Cosmic inflation. Lectures presented at the NATO Advanced Studies Institute, Structure formation in the universe. Cambridge (1999)

    Google Scholar 

  6. Albrecht, A., et al.: Causality, randomness, and the microwave background. Phys. Rev. Lett. 76, 1413 (1996)

    Google Scholar 

  7. Ambrosio, M., et al.: Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO. Phys. Lett. B 434, 451 (1998) [hep-ex/9807005]

    Google Scholar 

  8. Arnaboldi, C., et al.: New limit on the neutrinoless ββ decay of 130 Te. Phys. Rev. Lett. 95, 142501 (2005) [hep-ex/0501034]

    Google Scholar 

  9. Astier, P., et al.: The supernova legacy survey: Measurement of Ω M , Ω λ and w from the first year data set. Astron. Astrophys. 447, 31 (2006) [astro-ph/0510447]

    Google Scholar 

  10. Athanassopoulos, C.: Evidence for $\bar v$ µ → $\bar v$ e oscillations from the LSND experiment at the Los Alamos Meson physics facility. Phys. Rev. Lett. 77, 3082 (1996) [nucl-ex/9605003]

    Google Scholar 

  11. Balbi, A., et al.: Constraints on cosmological parameters from MAXIMA-I. Astrophys. J. Lett. 545, L1–L4 (2000)

    Google Scholar 

  12. Banday, A.J., et al.: Reappraising foreground contamination in the COBE-DMR data. Mon. Not. R. Astron. Soc. 345, 897 (2003)

    Google Scholar 

  13. Banerjee, R., Jedamzik, K.: Evolution of cosmic magnetic fields: From the very early Universe, to recombination, to the present. Phys. Rev. D 70, 123003-1–123003-25 (2004)

    Google Scholar 

  14. Barger, V., et al.: Hiding relativistic degrees of freedom in the early Universe. Phys. Lett. B 569, 123–128 (2003)

    Google Scholar 

  15. Barkana, R., Loeb, A.: Identifying the reionization redshift from the cosmic star formation rate. Astrophys. J. 539, 20 (2000)

    Google Scholar 

  16. Barrow, J.D., Tsagas, C.: Slow decay of magnetic fields in open Friedmann universes. Phys. Rev. D 77, 107302-1–107302-4 (2008)

    Google Scholar 

  17. Barrow, J.D., Juszkiewicz, R., Sonoda, D.H.: Universal rotation – How large can it be? Mon. Not. R. Astron. Soc. 213, 917 (1985)

    Google Scholar 

  18. Barrow, J.D., Ferreira, P.G., Silk, J.: Constraints on a primordial magnetic field. Phys. Rev. Lett. 78, 3610–3613 (1997)

    Google Scholar 

  19. Basko, M.M.: The thermalization length of resonance radiation with partial frequency redistribution. Astrofizika 17, 69 (1981)

    Google Scholar 

  20. Baugh, C.M.: A primer on hierarchical galaxy formation the semi-analytical approach. Report Prog. Phys. 69, 3101 (2006)

    Google Scholar 

  21. Bean, R., Melchiorri, A., Silk, J.: Cosmological constraints in the presence of ionizing and resonance radiation at recombination. Phys. Rev. D75, 063505 (2007)

    Google Scholar 

  22. Beaudet, G., Goret, P.: Leptonic numbers and the neutron to proton ratio in the hot big bang model. Astron. Astrophys. 49, 415–419 (1976)

    Google Scholar 

  23. Beaudet, G., Yahil, A.: More on big-bang nucleosynthesis with nonzero lepton numbers. Astrophys. J. 218, 253–262 (1977)

    Google Scholar 

  24. Beck, R.: Magnetic fields in normal galaxies. R. Soc. of London Trans. Ser. A 358, 777–796 (2000)

    Google Scholar 

  25. Bennett, C.L., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: Preliminary maps and basic results. Astrophys. J. Suppl. 148, 1–27 (2003)

    Google Scholar 

  26. Bevis, N., Hindmarsh, M., Kunz, M.: WMAP constraints on inflationary models with global defects. Phys. Rev. D 70, 043508 (2004) [astro-ph/0403029]

    Google Scholar 

  27. Bevis, N., et al.: CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model. Phys. Rev. D 75, 065015 (2007) [astro-ph/0605018]

    Google Scholar 

  28. Bevis, N., et al.: CMB polarization power spectra contributions from a network of cosmic strings. Phys. Rev. D 76, 043005 (2007)

    Google Scholar 

  29. Bevis, N., et al.: Fitting CMB data with cosmic strings and inflation. Phys. Rev. Lett. 100, 021301 (2008)

    Google Scholar 

  30. Bhattacharjee, P.: Origin and propagation of extremely high energy cosmic rays. Phys. Rev. 327, 109 (2000)

    Google Scholar 

  31. Biermann, L.: Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum. Zeitschrift Naturforschung Teil A 5, 65–71 (1950)

    Google Scholar 

  32. Blackman, E.G., Field, G.B.: Constraints on the magnitude of α in dynamo theory. Astrophys. J. 534, 984–988 (2000)

    Google Scholar 

  33. Blasi, P., Burles, S., Olinto, A.: Cosmological magnetic field limits in an inhomogeneous universe. Astrophys. J. 514, L79–L82 (1999)

    Google Scholar 

  34. Bond, J.R., Efstathiou, G.: Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. Lett. 285, L45 (1984)

    Google Scholar 

  35. Boschan, P., Biltzinger, P.: Distortion of the CMB spectrum by primeval hydrogen recombination. Astron. Astrophys. 336, 1 (1998)

    Google Scholar 

  36. Boughn, S., Crittenden, R.: A correlation between the cosmic microwave background and large-scale structure in the universe. Nature 427, 45–47 (2004)

    Google Scholar 

  37. Brandenburg, A.: The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence. Astrophys. J. 550, 824–840 (2001)

    Google Scholar 

  38. Brandenburg, A., Subramanian, K.: Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Report 417, 1–209 (2005) [astro-ph/0405052]

    Google Scholar 

  39. Brandenburg, A., Enqvist, K., Olesen, P.: The effect of Silk damping on primordial magnetic fields. Phys. Rev. B 392, 395 (1997)

    Google Scholar 

  40. Bucher, M., Moodley, K., Turok, N.: General primordial cosmic perturbation. Phys. Rev. D 62, 3508 (2000)

    Google Scholar 

  41. Bucher, M., Moodley, K., Turok, N.: Constraining isocurvature perturbations with CMB polarization. Phys. Rev. Lett. 87, 191301 (2001)

    Google Scholar 

  42. Buchmuller, W., Di Bari, P., Plumacher, M.: Some aspects of thermal leptogenesis. New J. Phys. 6 105 (2004) [hep-ph/0406014]

    Google Scholar 

  43. Burigana, C., et al.: CMB polarization constraints on radiative feedback. Mon. Not. R. Astron. Soc. 385, 404–410 (2008)

    Google Scholar 

  44. Burles, S., Nollett, K., Turner, M.S.: Big bang nucleosynthesis predictions for precision cosmology. Astrophys. J. 552 L1 (2001)

    Google Scholar 

  45. Challinor, A., Lasenby, A.: Cosmic microwave background anisotropies in the cold dark matter model: A covariant and gauge-invariant approach. Astrophys. J. 513, 1 (1999)

    Google Scholar 

  46. Chen, G., et al.: Looking for cosmological Alfvén waves in Wilkinson microwave anisotropy probe data. Astrophys. J. 611, 655 (2004)

    Google Scholar 

  47. Chiang, L.-Y., et al.: Non-gaussianity of the derived maps from the first-year Wilkinson microwave anisotropy probe data. Astrophys. J. Lett. 590, L65 (2003)

    Google Scholar 

  48. Chiang, L.-Y., Naselsky, P.D., Coles, P.: The robustness of phase mapping as a nongaussianity test. Astrophys. J. Lett. 602, L1 (2004)

    Google Scholar 

  49. Choudhury, T.R., Ferrara, A.: Updating reionization scenarios after recent data. Mon. Not. R. Astron. Soc. 371, L55 (2006)

    Google Scholar 

  50. Christensson, M., Hindmarsh, M., Brandenburg, A.: Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence. Phys. Rev E 64, 056405-1–056405-6 (2001)

    Google Scholar 

  51. Chu, Y.Z., Cirelli, M.: Sterile neutrinos, lepton asymmetries, primordial elements: How much of each? Phys. Rev. D 74, 085015 (2006)

    Google Scholar 

  52. Cirelli, M., Strumia, A.: Cosmology of neutrinos and extra-light particles after WMAP3. J. Cosmol. Astropart. Phys. 13 (2006) [astro-ph/0607086]

    Google Scholar 

  53. Clarke, T.E., Kronberg, P.P., Bohringer, H.: A new radio-X-ray probe of galaxy cluster magnetic fields. Astrophys. J. Lett. 547, L111–L114 (2001)

    Google Scholar 

  54. Cole, S., et al.: A recipe for galaxy formation. Mon. Not. R. Astron. Soc. 271, 781 (1994)

    Google Scholar 

  55. Cole, S., et al.: The 2dF galaxy redshift survey: Power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505 (2005)

    Google Scholar 

  56. Coles, P., Chiang, L.-Y.: Characterizing the nonlinear growth of large-scale structure in the universe. Nature 406, 376 (2000)

    Google Scholar 

  57. Coles, P., et al.: Phase correlations in cosmic microwave background temperature maps. Mon. Not. R. Astron. Soc. 350, 989 (2004)

    Google Scholar 

  58. Colley, W.N., Gott, J.R. III.: Genus topology of the cosmic microwave background from WMAP. Mon. Not. R. Astron. Soc. 344, 686 (2003)

    Google Scholar 

  59. Copeland, E.J., et al.: False vacuum inflation with Einstein gravity, Phys. Rev. D 49, 6410 (1994)

    Google Scholar 

  60. Copeland, E.J., Myers, R., Polchinski, J.: Cosmic F- and D-strings. J. High Energy Phys. 6, 13 (2004)

    Google Scholar 

  61. Copeland, E.J., et al.: On the collision of cosmic superstrings (2007) [arXiv:0712.0808]

    Google Scholar 

  62. Courvoisier, A., Hughes, D.W., Tobias, S.M.: α effect in a family of chaotic flows. Phys. Rev. Lett. 96, 034503-1–034503-4 (2006)

    Google Scholar 

  63. Cruz, M., et al.: A cosmic microwave background feature consistent with a cosmic texture. Science 318, 1612 (2007) [arXiv:0710.5737]

    Google Scholar 

  64. Davis, M., et al.: The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371 (1985)

    Google Scholar 

  65. de Bernardis, P., et al.: A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000)

    Google Scholar 

  66. de Felice, A., et al.: Relaxing nucleosynthesis constraints on Brans-Dicke theories. Phys. Rev. D 74 103005 (2006) [astro-ph/0510359]

    Google Scholar 

  67. de Oliveira-Costa, A., et al.: Significance of the largest scale CMB fluctuations in WMAP. Phys. Rev. D 69, 063516 (2004a)

    Google Scholar 

  68. de Oliveira-Costa, A., et al.: The quest for microwave foreground X. Astrophys. J. Lett. 606, L89 (2004b)

    Google Scholar 

  69. Dineen, P., Rocha, G., Coles, P.: Non-random phases in non-trivial topologies. Mon. Not. R. Astron. Soc. 358, 1285 (2005)

    Google Scholar 

  70. Dolgov, A.D., et al.: Cosmological bounds on neutrino degeneracy improved by flavor oscillations. Nucl. Phys. B 632, 363 (2002) [hep-ph/0201287]

    Google Scholar 

  71. Dolgov, A.D., Hansen, S.H., Smirnov, A.Y.: Neutrino statistics and big bang nucleosynthesis. J. Cosmol. Astropart. Phys. 6, 4 (2005) [astro-ph/0611784]

    Google Scholar 

  72. Doroshkevich, A.G., et al.: Ionization history of the cosmic plasma in the light of the recent cosmic background imager and future planck data. Astrophys. J. 586 709 (2003)

    Google Scholar 

  73. Dunkley, J., et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Likelihoods and parameters from WMAP data. Astrophys. J. Suppl. 180, 306 (2009)

    Google Scholar 

  74. Durrer, R.: Gauge-invariant cosmological perturbation theory with seeds. Phys. Rev. D 42, 2533 (1990)

    Google Scholar 

  75. Durrer, R.: The cosmic microwave background. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  76. Durrer, R., Zhou, Z.H.: Large-scale structure formation with global topological defects. Phys. Rev. D 53, 5394 (1996) [astro-ph/9508016]

    Google Scholar 

  77. Durrer, R., Howard, A., Zhou, Z.H.: Microwave anisotropies from texture-seeded structure formation. Phys. Rev. D 49, 681 (1994) [astro-ph/9311040]

    Google Scholar 

  78. Durrer, R., et al.: Cosmic microwave background anisotropies from scaling seeds: Fit to observational data. Phys. Rev. Lett. 79, 5198 (1997) [astro-ph/9706215]

    Google Scholar 

  79. Durrer, R., Kunz, M., Melchiorri, A.: Reproducing the observed cosmic microwave background anisotropies with causal scaling seeds. Phys. Rev. D 63, 081301 (2001) [astro-ph/0010633]

    Google Scholar 

  80. Durrer, R., Kunz, M., Melchiorri, A.: Cosmic structure formation with topological defects. Phys. Rept. 364, 1 (2002) [astro-ph/0110348]

    Google Scholar 

  81. Dvali, G., Tye, S.H.: Brane inflation. Phys. Lett. B 450, 72 (1999)

    Google Scholar 

  82. Dvali, G., Shafi, Q., Schaefer, R.: Large scale structure and supersymmetric inflation without fine tuning. Phys. Rev. Lett. 73, 1886 (1994)

    Google Scholar 

  83. Efstathiou, G.: A maximum likelihood analysis of the low cosmic microwave background multipoles from the Wilkinson microwave anisotropy probe. Mon. Not. R. Astron. Soc. 348, 885 (2004)

    Google Scholar 

  84. Eidelman, S., et al.: Review of particle physics. Phys. Lett. B 592, 1 (2004)

    Google Scholar 

  85. Eisenstein, D.J., et al.: Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Google Scholar 

  86. Eitel, K.: Direct neutrino mass experiments. Nucl. Phys. B Suppl. 143, 197 (2005)

    Google Scholar 

  87. Elgaroy, O., Lahav, O.: Upper limits on neutrino masses from the 2dFGRS and WMAP: The role of priors. J. Cosmol. Astropart. Phys. 4, 4 (2003)

    Google Scholar 

  88. Elliott, S.R., Vogel, P.: Double beta decay. Ann. Rev. Nucl. Part. Sci. 52, 115 (2002) [hep-ph/0202264]

    Google Scholar 

  89. Eriksen, H.K., et al.: Asymmetries in the cosmic microwave background anisotropy field. Astrophys. J. 605, 14 (2004)

    Google Scholar 

  90. Esposito, S., et al.: Non equilibrium spectra of degenerate relic neutrinos. Nucl. Phys. B 590, 539 (2000) [astro-ph/0005573]

    Google Scholar 

  91. Falcone, D., Tramontano, F.: Neutrino oscillations and neutrinoless double beta decay. Phys. Rev. D 64 077302 (2001) [hep-ph/0102136]

    Google Scholar 

  92. Fan, X., et al.: Constraining the evolution of the ionizing background and the epoch of reionization with z ∼ 6 quasars. II. A sample of 19 quasars. Astron. J. 132, 117 (2006)

    Google Scholar 

  93. Field, G.B., Carroll, S.M.: Cosmological magnetic fields from primordial helicity. Phys. Rev. D 62, 103008 (2000)

    Google Scholar 

  94. Fisher, N.I.: Statistical analysis of circular data. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  95. Fraisse, A., et al.: Small-angle CMB temperature anisotropies induced by cosmic strings (2007) [arXiv:0708.1162][Au1]

    Google Scholar 

  96. Freese, K., Kolb, E.W., Turner, M.S.: Massive, degenerate neutrinos and cosmology. Phys. Rev. D 27, 1689 (1983)

    Google Scholar 

  97. Fukuda, Y., et al.: Evidence for oscillation of atmospheric neutrinos (Super-Kamiokande Collab.) Phys. Rev. Lett. 81, 1562 (1998)

    Google Scholar 

  98. Gaensler, B.M.: The square kilometre array: A new probe of cosmic magnetism. Astron. Nachr. 327, 387–394 (2006)

    Google Scholar 

  99. Gaensler, B.M., Beck, R., Feretti, L.: The origin and evolution of cosmic magnetism. New Astron. Rev. 48, 1003–1012 (2004)

    Google Scholar 

  100. Gallerani, S., Choudhury, T.R., Ferrara, A.: Constraining the reionization history with QSO absorption spectra. Mon. Not. R. Astron. Soc. 370, 1401 (2006)

    Google Scholar 

  101. Gangui, A., Pogosian, L., Winitzki, S.: Cosmic string signatures in anisotropies of the cosmic microwave background. New Astron. Rev. 46, 681 (2002) [astro-ph/0112145]

    Google Scholar 

  102. Gasperini, M.: Primordial magnetic seeds from string cosmology. Astron. Nachr. 327, 399 (2006)

    Google Scholar 

  103. Giovannini, M.: Tight coupling expansion and fully inhomogeneous magnetic fields. Phys. Rev. D 74, 063002 (2006)

    Google Scholar 

  104. Giovannini, M., Kunze, K.E.: Magnetized CMB observables: A dedicated numerical approach. Phys. Rev. D 77, 0630031–0630031-29 (2008)

    Google Scholar 

  105. Gnedin, N.Y.: Effect of reionization on structure formation in the universe. Astrophys. J. 542, 535 (2000)

    Google Scholar 

  106. Gnedin, N.Y., Ferrara, A., Zweibel, E.G.: Generation of the primordial magnetic fields during cosmological reionization. Astrophys. J. 539, 505–516 (2000)

    Google Scholar 

  107. Gopal, R., Sethi, S.: Generation of magnetic field in the pre-recombination era. Mon. Not. R. Astron. Soc. 363, 521–528 (2005)

    Google Scholar 

  108. Gunn, J.E., Peterson, B.A.: On the density of neutral hydrogen in intergalactic space: Astrophys. J. 142, 1633 (1965)

    Google Scholar 

  109. Guth, A.H.: Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)

    Google Scholar 

  110. Hannestad, S.: Cosmological limit on the neutrino mass. Phys. Rev. D 66, 125011 (2002)

    Google Scholar 

  111. Hannestad, S., Raffelt, G.G.: Neutrino masses and cosmic radiation density: Combined analysis. J. Cosmol. Astropart. Phys., JCAP11(2006)016 [astro-ph/0607101]

    Google Scholar 

  112. Harrison, E.R.: Generation of magnetic fields in the radiation ERA. Mon. Not. R. Astron. Soc. 147, 279–286 (1970)

    Google Scholar 

  113. Harrison, E.R.: Fluctuations at the threshold of classical cosmology. Phys. Rev. D 1 2726 (1970)

    Google Scholar 

  114. Haugen, N.E.L., Brandenburg, A., Dobler, W.: Is nonhelical hydromagnetic turbulence peaked at small scales? Astrophys. J. Lett. 597, L141–L144 (2003)

    Google Scholar 

  115. Haugen, N.E.L., Brandenburg, A., Dobler, W.: Simulations of nonhelical hydromagnetic turbulence. Phys. Rev. E 70, 016308-1–016308-14 (2004)

    Google Scholar 

  116. Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)

    Google Scholar 

  117. Hinshaw, G., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: Data processing methods and systematic error limits. Astrophys. J. 148, 63 (2003)

    Google Scholar 

  118. Hinshaw, G., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Temperature analysis. Astrophys. J. Suppl. 170, 288 (2007) [astro-ph/0603451]

    Google Scholar 

  119. Hinshaw, G., et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Data processing, sky maps, and basic results (2008) [arXiv:0803.0732]

    Google Scholar 

  120. Hu, W.T.: Wandering in the background: A cosmic microwave background explorer. PhD thesis, UC Berkeley (1995) [astro-ph/9508126]

    Google Scholar 

  121. Hu, W.T.: CMB temperature and polarization anisotropy fundamentals. Ann Phys 303, 203–225 (2003)

    Google Scholar 

  122. Hu, W., Sugiyama, N.: Anisotropies in the cosmic microwave background: An analytic approach. Astrophys. J. 444, 489 (1995)

    Google Scholar 

  123. Hummer, D.G.: Total recombination and energy loss coefficients for hydrogenic ions at low density for 10 $ \simeq $ T e /Z 2 $ \simeq $ 107 K. Mon. Not. R. Astron. Soc. 268, 109 (1994)

    Google Scholar 

  124. Ichikawa, K., Fukugita, M., Kawasaki, M.: Constraining neutrino masses by CMB experiments alone. Phys. Rev. D 71, 043001 (2005)

    Google Scholar 

  125. Ichikawa, K., Kawasaki, M., Takahashi, F.: Constraint on the effective number of neutrino species from the WMAP and SDSS LRG power spectra. J. Cosmol. Astropart. Phys. 5, 7 (2007) [astro-ph/0611784]

    Google Scholar 

  126. Ichikawa, K., et al.: Increasing the effective number of neutrinos with decaying particles. J. Cosmol. Astropart. Phys. 5, 8 (2007) [hep-ph/0703034]

    Google Scholar 

  127. Ichiki, K., Yamaguchi, M., Yokoyama, J.: Lepton asymmetry in the primordial gravitational wave spectrum. Phys. Rev. D 75, 084017 (2007) [hep-ph/0611121]

    Google Scholar 

  128. Ichiki, K., et al.: Magnetic field spectrum at cosmological recombination (2007) [astro-ph/0701329][Au2]

    Google Scholar 

  129. Ivanchuk, A. V., Orlov, A.D., Varshalovic, D.A.: Effects of possible deviations of fundamental physical constants on primordial nucleosynthesis. Pis'ma Astronomicheskii Zhurnal 27, 615 (2001)

    Google Scholar 

  130. Izotov, Y.I., Thuan, T.X.: Systematic effects and a new determination of the primordial abundance of 4 H e and dY/dZ from observations of blue compact galaxies. Astrophys. J. 602 200 (2004) [astro-ph/0310421]

    Google Scholar 

  131. Izotov, Y.I., Thuan, T.X., Stasinska, G.: The primordial abundance of 4 He: A self-consistent empirical analysis of systematic effects in a large sample of low-metallicity H II regions. Astrophys. J. 662, 15 (2007) [astro-ph/0702072]

    Google Scholar 

  132. Jaffe, T., et al.: On the viability of bianchi type VII h models with dark energy. Astrophys. J. 644, 701 (2006)

    Google Scholar 

  133. Jones, B.J.T., Wyse, R.F.G.: The ionisation of the primeval plasma at the time of recombination. Astron. Astrophys. 149, 144 (1985)

    Google Scholar 

  134. Jones, N., Stoica, H., Tye, S.H.: The production, spectrum and evolution of cosmic strings in brane inflation. Phys. Lett. B 563, 6 (2003) [hep-th/0303269]

    Google Scholar 

  135. Jones, W.C., et al.: A measurement of the angular power spectrum of the CMB temperature anisotropy from the 2003 flight of BOOMERANG. Astrophys. J. 647, 823 (2006) [astro-ph/0507494]

    Google Scholar 

  136. Kamionkowski, M., Kosovsky, A.: The cosmic microwave background and particle physics. Ann. Rev. Nucl. Part. Sci. 49, 77 (1999) [astro-ph/9904108]

    Google Scholar 

  137. Kaiser, N., Stebbins, A.: Microwave anisotropy due to cosmic strings. Nature 310, 391 (1984)

    Google Scholar 

  138. Kang, H.-S., Steigman, G.: Cosmological constraints on neutrino degeneracy. Nucl. Phys. B 372, 494 (1992)

    Google Scholar 

  139. Kasner, E.: Geometrical theorems on Einstein's cosmological equations. Trans. Amer. Math. Soc., 43, 217–221 (1921)

    Google Scholar 

  140. Katrin Collaboration. KATRIN: A next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. (http://www-ik.fzk.de/katrin) (2001) [hep-ex/0109033]

  141. Kauffmann, G., White, S.D.M., Guiderdoni, B.: The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201 (1993)

    Google Scholar 

  142. Kazantsev, A.P.: Enhancement of a magnetic field by a conducting fluid. J. Exp. Theor. Phys. 26, 1031–1034 (1968)

    Google Scholar 

  143. Kibble, T.W.B.: Topology of cosmic domains and strings. J. Phys. A9, 1387 (1976)

    Google Scholar 

  144. Kinney, W.H., et al.: Latest inflation model constraints from cosmic microwave background measurements (2008) [arXiv:0805.1118][Au3]

    Google Scholar 

  145. Klapdor-Kleingrothaus, H.V., et al.: Latest results from the Heidelberg–Moscow double beta decay experiment. Eur. Phys. J. A 12, 147 (2001) [hep-ph/0103062]

    Google Scholar 

  146. Kleeorin, N., et al.: Helicity balance and steady-state strength of the dynamo generated galactic magnetic field. Astron. Astrophys. Lett. 361, L5–L8 (2000)

    Google Scholar 

  147. Kneller, J.P., Steigman, G.: BBN for pedestrians. New J. Phys. 6, 117 (2004)

    Google Scholar 

  148. Komatsu, E., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: Tests of gaussianity. Astrophys. J. Suppl. 148, 119 (2003)

    Google Scholar 

  149. Komatsu, E., et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation (2008) [arXiv:0803.0547v1]

    Google Scholar 

  150. Kraus, C., et al.: Final results from phase II of the mainz neutrino mass searchin tritium β decay. The Eur. Phys. J. C 40, 447 (2004)

    Google Scholar 

  151. Krause, F., Rädler, K.-H.: Mean-field magnetohydrodynamics and dynamo theory. Akademie-Verlag, Berlin (1980)

    Google Scholar 

  152. Krolik, J.H.: Further corrections to the theory of cosmological recombination. Astrophys. J. 353, 21 (1990)

    Google Scholar 

  153. Kuiper, N.H.: Koninklijke Nederlandse Akademie Van Wetenschappen, Proc. Ser. A, LXIII, pp. 38–49 (1960)

    Google Scholar 

  154. Kulsrud, R.M., Zweibel, E.G.: On the origin of cosmic magnetic fields. Report Prog. Phys. Reports Prog. Phys. 71/4, 046901 (2008) [arXiv:0707.2783]

    Google Scholar 

  155. Kulsrud, R.M., et al.: The protogalactic origin for cosmic magnetic fields. Astrophys. J. 480, 481–491 (1997)

    Google Scholar 

  156. Kuzmin, V., Rubakov, V., Shaposhnikov, M.: On anomalous electroweak baryon-number non-conservation in the early universe. Phys. Lett. B 155, 36 (1985)

    Google Scholar 

  157. La, D., Steinhardt, P.J.: Extended inflationary cosmology. Phys. Rev. Lett. 62, 376 (1989)

    Google Scholar 

  158. Land, K., Magueijo, J.: Examination of evidence for a preferred axis in the cosmic radiation anisotropy. Phys. Rev. Lett. B 95, 071301 (2005)

    Google Scholar 

  159. Landau, S., Harari, D., Zaldarriaga, M.: Constraining nonstandard recombination: A worked example. Phys. Rev. D 63, 1303 (2001)

    Google Scholar 

  160. Lattanzi, M., Ruffini, R., Vereshchagin, G.V.: Joint constraints on the lepton asymmetry of the Universe and neutrino mass from the Wilkinson microwave anisotropy probe. Phys. Rev. D 72 063003 [astro-ph/0509079]

    Google Scholar 

  161. Lepp, S., P.C. Stancil, A. Dalgarno, A.: Chemistry of the early Universe. Mem. Soc. Astron. It. 69, 331 (1998)

    Google Scholar 

  162. Lesgourgues, J., Pastor, S.: Massive neutrinos and cosmology. Phys. Report 429, 307 (2006)

    Google Scholar 

  163. Lewis, A.: CMB anisotropies from primordial inhomogeneous magnetic fields. Phys. Rev. D70, 043011 (2004)

    Google Scholar 

  164. Liddle, A.R., Lyth, D.H.: COBE, gravitational waves, inflation and extended inflation. Phys. Lett. B291, 391 (1992)

    Google Scholar 

  165. Liddle, A.R., Lyth, D.H.: The cold dark matter density perturbations. Phys. Rept. 231, 1 (1993)

    Google Scholar 

  166. Linde, A.: Eternal extended inflation and graceful exit from old inflation without Jordan–Brans–Dicke. Phys. Lett. B249, 18 (1990)

    Google Scholar 

  167. Linde, A.: Axions in inflationary cosmology. Phys. Lett. B259, 38 (1991)

    Google Scholar 

  168. Lobashev, V.M.: The search for the neutrino mass by direct method in the tritium beta-decay and perspectives of studies in the project CATRIN. Nucl. Phys. A719, 153 (2003)

    Google Scholar 

  169. Lucchin, F., Matarrese, S.: Power-law inflation. Phys. Rev. D32, 1316 (1985)

    Google Scholar 

  170. Luminet, J.-P., et al.: Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature 425, 593 (2003)

    Google Scholar 

  171. Lyubarski, Y.E., Syunyaev, R.A.: The spectral features in the microwave background spectrum due to energy release in the early universe. Astrophys. Space Sci. 123, 171 (1983)

    Google Scholar 

  172. Mack, A., Kahniashvili, T., Kosowsky, A.: Microwave background signatures of a primordial stochastic magnetic field. Phys. Rev. D65, 123004 (2002)

    Google Scholar 

  173. Maltoni, M., et al.: Status of global fits to neutrino oscillations. New J. Phys. 6, 122 (2004) [hep-ph/0405172]

    Google Scholar 

  174. Mangano, G., et al.: A precision calculation of the effective number of cosmological neutrinos. Phys. Lett. B534, 8 (2002)[astro-ph/0111408]

    Google Scholar 

  175. Mangano, G., et al.: Relic neutrino decoupling including flavour oscillations. Nucl. Phys. B 729, 221 (2005) [hep-ph/0506164]

    Google Scholar 

  176. Mangano, G., et al.: Present bounds on the relativistic energy density in the universe from cosmological observables. J. Cosmol. Astropart. Phys. 3, 6 (2007) [astro-ph/0612150]

    Google Scholar 

  177. Matarrese, S., et al.: Large-scale magnetic fields from density perturbations. Phys. Rev. D 71, 043502-1–043502-7 (2005)

    Google Scholar 

  178. McDonald, P., et al.: The linear theory power spectrum from the Lyα forest in the sloan digital sky survey. Astrophys. J. 635, 761 (2005)

    Google Scholar 

  179. Moffatt, H.K.: Magnetic field generation in electrically conducting fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  180. Naselsky, P., Novikov, I.: The primordial baryonic clouds and their contribution to the cosmic microwave background anisotropy and polarization formation. Mon. Not. R. Astron. Soc. 334, 137 (2002)

    Google Scholar 

  181. Naselsky, P.D., Polnarev, A.G.: Anisotropy and polarization of the microwave background radiation as a test of nonequilibrium ionization of the pregalactic plasma. Astrofizika 26, 543 (1987)

    Google Scholar 

  182. Naselsky, P.D., Doroshkevich, A G., Verkhodanov, O.: Phase cross-correlation of the Wilkinson microwave anisotropy probe internal linear combination map and foregrounds. Astrophys. J. Lett. 599, L53 (2003)

    Google Scholar 

  183. Naselsky, P.D., et al.: Primordial magnetic field and non-gaussianity of the one-year Wilkinson microwave anisotropy probe data. Astrophys. J. 615, 45 (2004)

    Google Scholar 

  184. Olive, K.A., Skillman, E.D.: A realistic determination of the error on the primordial helium abundance: Steps toward nonparametric nebular helium abundances. Astrophys. J. 617, 29 (2004)

    Google Scholar 

  185. Olive, K.A., Steigman, G., Walker, T.P.: Primordial nucleosynthesis: Theory and observations. Phys. Report 333 389 (2000) [astro-ph/9905320]

    Google Scholar 

  186. Page, L., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Polarization analysis. Astrophys. J. Suppl. 170, 335 (2007) [astro-ph/0603450]

    Google Scholar 

  187. Park, C.G., Park, C., Gott, J.R. III: Cleaned 3 year Wilkinson microwave anistropy probe cosmic microwave background map: Magnitude of the quadrupole and alignment of large-scale modes. Astrophys. J. 660, 959 (2007)

    Google Scholar 

  188. Parker, E.N.: Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955)

    Google Scholar 

  189. Peebles, P.J.E.: Recombination of the primeval plasma. Astrophys. J. Lett. 153, 1–12 (1968)

    Google Scholar 

  190. Peebles, P.J.E.: The large-scale structure of the universe. Princeton University Press, Princeton (1980)

    Google Scholar 

  191. Peebles, P.J.E.: Origin of the large-scale galaxy peculiar velocity field: A minimal isocurvature model. Nature 327, 210 (1987)

    Google Scholar 

  192. Peebles, P.J.E.: Cosmic background temperature anisotropy in a minimal isocurvature model for galaxy formation. Astrophys. J. 315, L73 (1987)

    Google Scholar 

  193. Peebles, P.J.E.: An isocurvature cold dark matter cosmogony: I. A worked example of evolution through inflation. Astrophys. J. 510, 523–530 (1999)

    Google Scholar 

  194. Peebles, P.J.E.: An isocurvature cold dark matter cosmogony: II. Observational tests. Astrophys. J. 510, 531–540 (1999)

    Google Scholar 

  195. Peebles, P.J.E., Yu, J.T.: Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815 (1970)

    Google Scholar 

  196. Peebles, P.J.E., Seager, S., Hu, W.: Delayed recombination. Astrophys. J. 539 L1 (2000)

    Google Scholar 

  197. Pequignot, D., Petitjean, P., Boisson, C.: Total and effective radiative recombination coefficients. Astron. Astrophys. 251, 680 (1991)

    Google Scholar 

  198. Percival, W.J., et al.: The 2dF galaxy redshift survey: The power spectrum and the matter content of the Universe. Mon. Not. R. Astron. Soc. 327, 1297–1306 (2001)

    Google Scholar 

  199. Perlmutter, S.J., et al.: Measurements of Ω and λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Google Scholar 

  200. Pontzen, A., Challinor, A.: Bianchi model CMB polarization and its implications for CMB anomalies. Mon. Not. R. Astron. Soc. 380, 1387 (2007)

    Google Scholar 

  201. Popa, L.A., Vasile, A.: WMAP five-year constraints on lepton asymmetry and radiation energy density: Implications for Planck. J. Cosmol. Astropart. Phys. JCAP06(2008)028

    Google Scholar 

  202. Press, W.H., Schechter, P.: Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974)

    Google Scholar 

  203. Ratra, B.: Cosmological seed magnetic field from inflation. Astrophys. J. 391, L1–L4 (1992)

    Google Scholar 

  204. Rees, M.J.: The origin and cosmogonic implications of seed magnetic fields. Quart. J. R. Astron. Soc. 28, 197–206 (1987)

    Google Scholar 

  205. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Google Scholar 

  206. Riess, A.G., et al.: Type Ia supernova discoveries at z > 1 from the hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004)

    Google Scholar 

  207. Ruffini, R., Song, D.J., Stella, L.: On the statistical distribution off massive fermions and bosons in a Friedmann universe. Astron. Astrophys. 125, 265 (1983)

    Google Scholar 

  208. Ruffini, R., Song, D.J., Taraglio, S.: The “ino”-mass and the cellular large-scale structure of the Universe. Astron. Astrophys. 190, 1 (1988)

    Google Scholar 

  209. Ruzmaikin, A.A., Sokoloff, D.D., Shukurov, A.M.: Magnetic fields of galaxies. Kluwer, Dordrecht (1988)

    Google Scholar 

  210. Rybicki, G.B., Dell'Antonio, I.P.: The time development of a resonance line in the expanding universe. Astrophys. J. 427 603 (1994)

    Google Scholar 

  211. Sarangi, S., Tye. S.-H.: Cosmic string production towards the end of brane inflation. Phys. Lett. B 536, 185 (2002) [hep-th/0204074]

    Google Scholar 

  212. Sarkar, S.: Big bang nucleosynthesis and physics beyond the standard model. Rept. Prog. Phys 59 1493 (1996) [hep-ph/9602260]

    Google Scholar 

  213. Schekochihin, A.A., et al.: Simulations of the small-scale turbulent dynamo. Astrophys. J. 612, 276–307 (2004)

    Google Scholar 

  214. Schekochihin, A.A., et al.: Plasma instabilities and magnetic field growth in clusters of galaxies. Astrophys. J. 629, 139–142 (2005)

    Google Scholar 

  215. Schmidt, M.: Large redshifts of five quasi-stellar sources. Astrophys. J. 141, 1295 (1965)

    Google Scholar 

  216. Schneider, R., et al.: Detectable signatures of cosmic radiative feedback. Mon. Not. R. Astron. Soc. 384, 1525 (2008) [astro-ph/0712.0538]

    Google Scholar 

  217. Seager, S., Sasselov, D.D., Scott, D.: A new calculation of the recombination epoch. Astrophys. J. Lett. 523, L1–L5 (1999)

    Google Scholar 

  218. Seager, S., Sasselov, D.D., Scott, D.: How exactly did the Universe become neutral? Astrophys. J. Suppl. 128, 407 (2000)

    Google Scholar 

  219. Seljak, U. et al.: Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy. Phys. Rev. 71D, 103515 (2005)

    Google Scholar 

  220. Seljak, U., Solsar, A., McDonald, P.: Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints. J. Cosmol. Astropart. Phys., JCAP10(2006)014

    Google Scholar 

  221. Semikoz, V.B., Sokoloff, D.D.: Large-scale magnetic field generation by α effect driven by collective neutrino-plasma interaction. Phys. Rev. Lett. 92, 131301 (2004)

    Google Scholar 

  222. Serpico, P.D., Raffelt, G.G.: Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology. Phys. Rev. D 71, 127301 (2005) [astro-ph/0506162]

    Google Scholar 

  223. Seshadri, T.R., Subramanian, K.: Cosmic microwave background polarization signals from tangled magnetic fields. Phys. Rev. Lett. 87, 101301-1–101301-4 (2001)

    Google Scholar 

  224. Sethi, S., Subramanian, K.: Primordial magnetic fields in the post-recombination era and early reionization. Mon. Not. R. Astron. Soc. 356, 778–788 (2005)

    Google Scholar 

  225. Sethi, S., Nath, B., Subramanian, K.: Mon. Not. R. Astron. Soc. 387, 1589–1596 (2008)[Au4]

    Google Scholar 

  226. Shukurov, A.: Introduction to galactic dynamos. In: Mathematical aspects of natural dynamos. Dormy, E., Desjardins, B. (eds.) EDP Press (2004) [astro-ph/0411739]

    Google Scholar 

  227. Shukurov, A., et al.: Galactic dynamo and helicity losses through fountain flow. Astron. Astrophys. Lett. 448, L33–L36 (2006)

    Google Scholar 

  228. Simha, V., Steigman, G.: Constraining the early-Universe baryon density and expansion rate. J. Cosmol. Astropart. Phys., JCAP 06 (2008) 016

    Google Scholar 

  229. Smith, C.J., et al.: Light element signatures of sterile neutrinos and cosmological lepton numbers. Phys. Rev. D 74, 085008 (2006) [astro-ph/0608377]

    Google Scholar 

  230. Smith, K.M., Zahn, O., Doré, O.: Detection of gravitational lensing in the cosmic microwave background. Phys. Rev. D 76, 043510 (2007)

    Google Scholar 

  231. Smoot, G.F., et al.: Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. Lett. 396, L1–L5 (1992)

    Google Scholar 

  232. Spergel, D.N., et al.: First-year Wilkinson microwave anisotropy probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    Google Scholar 

  233. Spergel, D.N., et al.: Three-year Wilkinson microwave anisotropy probe (WMAP) observations: Implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Google Scholar 

  234. Springel, V., Hernquist, L.: The history of star formation in a λ cold dark matter universe. Mon. Not. R. Astron. Soc. 339, 312 (2003)

    Google Scholar 

  235. Springel, V., Frenk, C.S., White, S.D.M.: The large-scale structure of the Universe. Nature 440, 1137–1144 (2006)

    Google Scholar 

  236. Steigman, G.: Primordial nucleosynthesis in the precision cosmology era. Ann. Rev. Nucl. Part. Sci. 57, 463 (2007)

    Google Scholar 

  237. Strumia, A., Visani, F.: Implications of neutrino data circa 2005. Nucl. Phys. B 726 294 (2005) [hep-ph/0503246]

    Google Scholar 

  238. Subramanian, K.: Unified treatment of small- and large-scale dynamos in helical turbulence. Phys. Rev. Lett. 83, 2957–2960 (1999)

    Google Scholar 

  239. Subramanian, K.: Hyperdiffusion in nonlinear large- and small-scale turbulent dynamos. Phys. Rev. Lett. 90, 245003 (2003)

    Google Scholar 

  240. Subramanian, K.: Primordial magnetic fields and CMB anisotropies. Astron. Nachr. 327, 403–409 (2006)

    Google Scholar 

  241. Subramanian, K.: Magnetizing the universe. In: from planets to dark energy: The modern radio universe. Beswick R., et al. (eds.) published by PoS [arXiv:0802.2804]

    Google Scholar 

  242. Subramanian, K., Barrow, J.D.: Microwave background signals from tangled magnetic fields. Phys. Rev. Lett. 81, 3575–3578 (1998)

    Google Scholar 

  243. Subramanian, K., Narasimha, D., Chitre, S.M.: Mon. Not. R. Astron. Soc. Lett. 271, L15–L18 (1994)[Au5]

    Google Scholar 

  244. Subramanian, K., Seshadri, T.R., Barrow, J.D.: Small-scale cosmic microwave background polarization anisotropies due to tangled primordial magnetic fields. Mon. Not. R. Astron. Soc. 344, L31–L35 (2003)

    Google Scholar 

  245. Subramanian, K., Brandenburg, A.: Magnetic helicity density and its flux in weakly inhomogeneous turbulence. Astrophys. J. Lett. 648, L71–L74 (2006) [astro-ph/0509392v1]

    Google Scholar 

  246. Subramanian, K., Shukurov, A., Haugen, N.E.L.: Evolving turbulence and magnetic fields in galaxy clusters. Mon. Not. R. Astron. Soc. 366, 1437–1454 (2006)

    Google Scholar 

  247. Sur, S., Brandenburg, A., Subramanian, K.: Kinematic α-effect in isotropic turbulence simulations. Mon. Not. R. Astron. Soc. 385, L15–L18 (2008)

    Google Scholar 

  248. Switzer, E.R., Hirata, C.M.: Primordial helium recombination III: Thomson scattering, isotope shifts, and cumulative results. (2007) [astro-ph/0702145]

    Google Scholar 

  249. Taylor, A.C., et al.: Clover - A B-mode polarization experiment. New Astron. Rev. 50, 993 (2006) [astro-ph/0610716]

    Google Scholar 

  250. Tegmark, M., Silk, J., Blanchard, A.: On the inevitability of reionization: Implications for cosmic microwave background fluctuations. Astrophys. J. 420, 484 (1994)

    Google Scholar 

  251. Tegmark, M., et al.: Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004)

    Google Scholar 

  252. Tegmark, M., et al.: The three-dimensional power spectrum of galaxies from the sloan digital sky survey. Astrophys. J. 606 702 (2004) [astro-ph/0310725]

    Google Scholar 

  253. Tremaine, S., Gunn, J.E.: Dynamical role of light neutral leptons in cosmology. Phys. Rev. Lett. 42, 407 (1979)

    Google Scholar 

  254. Turner, M., Widrow, L.M.: Inflation-produced, large-scale magnetic fields. Phys. Rev. D 37, 2743–2754 (1988)

    Google Scholar 

  255. Turok, N.: A causal source which mimics inflation. Phys. Rev. Lett. 77, 4138 (1996) [astro-ph/9607109]

    Google Scholar 

  256. Turok, N., Spergel, D.N.: Global texture and the microwave background. Phys. Rev. Lett. 64, 2736 (1990)

    Google Scholar 

  257. Vachaspati, T.: Estimate of the primordial magnetic field helicity. Phys. Rev. Lett. 87, 251302 (2001)

    Google Scholar 

  258. Varshalovich, D.A., Ivanchuk, A.V., Potehin, A.Yu.: Do the fundamental physical constants have the same values in different regions of space-time. Phys. J. Exp. Theor. Phys. 144 1001 (1999)

    Google Scholar 

  259. Verner, D.A., Ferland, G.J.: Atomic data for astrophysics. I. Radiative recombination rates for H-like, He-like, Li-like, and Na-like ions over a broad range of temperature. Astrophys. J. Suppl. 103, 467 (1996)

    Google Scholar 

  260. Vielva, P., et al.: Detection of non-Gaussianity in the Wilkinson microwave anisotropy probe first-year data using spherical wavelets. Astrophys. J. 609, 22 (2004)

    Google Scholar 

  261. Vilenkin, A., Shellard, E.P.S.: Cosmic strings and other topological defects. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  262. Vishniac, E.T., Cho, J.: Magnetic helicity conservation and astrophysical dynamos. Astrophys. J. 550, 752–760 (2001)

    Google Scholar 

  263. Vogt, C., Enßlin, T.A.: A Bayesian view on Faraday rotation maps seeing the magnetic power spectra in galaxy clusters. Astron. Astrophys. 434, 67–76 (2005)

    Google Scholar 

  264. Wagoner, R.V., Fowler, W.A., Hoyle, F.: On the synthesis of elements at very high temperatures. Astrophys. J. 148, 3 (1967)

    Google Scholar 

  265. Watts, P.I.R., Coles, P.: Statistical cosmology with quadratic density fields. Mon. Not. R. Astron. Soc. 338 806 (2003)

    Google Scholar 

  266. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys 61, 1–23 (1989)

    Google Scholar 

  267. White, S.D.M., Rees, M.J.: Core condensation in heavy halos – A two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341 (1978)

    Google Scholar 

  268. Widrow, L.M.: Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 74, 775–823 (2002)

    Google Scholar 

  269. Wong, Y.Y.Y.: Analytical treatment of neutrino asymmetry equilibration from flavour oscillations in the early universe. Phys. Rev. D 66 025015 (2002) [hep-ph/0203180]

    Google Scholar 

  270. Yahil, A., Beaudet, G.: Big-Bang nucleosynthesis with nonzero lepton numbers. Astroph. J. 206, 26–29 (1976)

    Google Scholar 

  271. Yamazaki, D.G., et al.: Effects of a primordial magnetic field on low and high multipoles of the cosmic microwave background. Phys. Rev. D 77, 043005 (2008)

    Google Scholar 

  272. Zabotin, N.A., Naselsky, P.D.: The neutrino background in the early universe and temperature fluctuations in the cosmic microwave radiation. Sov. Astron. 26, 272 (1982)

    Google Scholar 

  273. Zel'dovich, Ya.B.: A hypothesis unifying the structure and the entropy of the Universe. Mon. Not. R. Astron. Soc. 160, 1 (1972)

    Google Scholar 

  274. Zel'dovich, Ya.B., Novikov I.D: The hypothesis of cores retarded during expansion and the hot cosmological model. Astronomicheskii Zhurnal 43, 758 (1966)

    Google Scholar 

  275. Zel'dovich, Ya.B., Kurt, V.G., Sunyaev, R.A.: Recombination of hydrogen in the hot model of the Universe. JETF 28, 146 (1969)

    Google Scholar 

  276. Zunckel, C., Ferreira, P.G.: Conservative estimates of the mass of the neutrino from cosmology. J. Cosmol. Astropart. Phys., JCAP 08(2007)004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Burigana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balbi, A. et al. (2009). Astrophysical Cosmology. In: D'Onofrio, M., Burigana, C. (eds) Questions of Modern Cosmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00792-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00792-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00791-0

  • Online ISBN: 978-3-642-00792-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics