## Abstract

Mathematical problem solving has been the subject of substantial and often controversial research for several decades. We use the term, *problem solving*, here in a broad sense to cover a range of activities that challenge and extend one’s thinking. In this chapter, we initially present a sketch of past decades of research on mathematical problem solving and its impact on the mathematics curriculum. We then consider some of the factors that have limited previous research on problem solving. In the remainder of the chapter we address some ways in which we might advance the fields of problem-solving research and curriculum development.

### Keywords

- Word Problem
- National Council
- Mathematical Thinking
- Statistical Reasoning
- Mathematics Curriculum

*These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.*

This is a preview of subscription content, access via your institution.

## Buying options

## Preview

Unable to display preview. Download preview PDF.

## References

Anderson, J. R., Boyle, C. B., & Reiser, B. J. (1985). Intelligent tutoring systems.

*Science*,*228*, 456–462.Australian Association of Mathematics Teachers (AAMT) and Early Childhood Australia (ECA) (2009). http://www.aamt.edu.au (accessed 27.03.09).

Baroody, A. J., Lai, M., & Mix, K. (2006). The development of young children’s early number and operation sense and its implications for early childhood education. In B. Spodek & O. Saracho (Eds.),

*Handbook of Research on the Education of Young Children*(2nd ed.). Mahwah: Lawrence Erlbaum.Beckmann, A. (2009). A conceptual framework for cross-curricular teaching.

*The Montana Mathematics Enthusiast*,*6*(supplement 1), 1–58.Begle, E. G. (1979).

*Critical Variables in Mathematics Education*. Washington D.C.: the Mathematics Association of America and the National Council of Teachers of Mathematics.Brown, S. I., & Walter, M. I. (2005).

*The Art of Problem Posing*(3rd ed.). Mahwah, New Jersey: Lawrence Erlbaum.Brownell, W. A. (1945). When is arithmetic meaningful?

*Journal of Educational Research*,*38*(3), 481–498.Cai, J. (2003). What research tells us about teaching mathematics through problem solving. In F. Lester & R. Charles (Eds.),

*Teaching Mathematics Through Problem Solving*(pp. 241–253). Reston, Virginia: National Council of Teachers of Mathematics.Campbell, S. (2006). Educational neuroscience: New horizons for research in mathematics education. In J. Novotna, H. Moraova, M. Kratka, & N. Stelikova (Eds.),

*Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education*(Vol.*2*, pp. 257–264). Prague, Czech Republic: Charles University.Charles, R., & Silver, E. (1988).

*The Teaching and Assessing of Mathematical Problem Solving*. Reston, VA: National Council of Teachers of Mathematics.Charlesworth, R., & Lind, K. (2006).

*Math and Science Learning for Young Children*(6th ed.). NY: Delmar Publishers.Davis, B., & Simmt, E. (2003). Understanding learning systems: Mathematics education and complexity science.

*Journal for Research in Mathematics Education*,*34*(2), 137–167.De Abreu, G. (2008). From mathematics learning out-of-school to multicultural classrooms: A cultural psychology perspective. In L. D. English (Ed.),

*Handbook of International Research in Mathematics Education*. New York: Routledge.Doerr, H. M., & English, L. D. (2001). A modelling perspective on students’ learning through data analysis. In M. van den Heuvel-Panhuizen (Ed.),

*Proceedings of the 25th Annual Conference of the International Group for the Psychology of Mathematics Education*(pp. 361–368). Utrecht University.Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning about data.

*Journal for Research in Mathematics Education*,*34*(2), 110–137.Doerr, H., & English, L. D. (2006). Middle-grade teachers’ learning through students’ engagement with modelling tasks.

*Journal for Research in Mathematics Teacher Education*,*9*(1), 5–32.Doerr, H. M., & Tripp, J. S. (1999). Understanding how students develop mathematical models.

*Mathematical Thinking and Learning*,*1*(3), 231–254.English, L. D. (2003). Problem posing in the elementary curriculum. In F. Lester & R. Charles (Eds.),

*Teaching Mathematics Through Problem Solving*(pp. 187–198). Reston, Virginia: National Council of Teachers of Mathematics.English, L. D. (2006). Mathematical modeling in the primary school: Children’s construction of a consumer guide.

*Educational Studies in Mathematics*,*62*(3), 303–329.English, L. D. (2007). Complex systems in the elementary and middle school mathematics curriculum: A focus on modeling. In B. Sriraman (Ed.),

*Festschrift in Honor of Gunter Torner. The Montana Mathematics Enthusiast*(pp. 139–156). Information Age Publishing.English, L. D. (2008). Introducing complex systems into the mathematics curriculum.

*Teaching Children Mathematics*,*15*(1), 38–47.English, L. D. (2009a). Promoting interdisciplinarity through mathematical modelling.

*ZDM: The International Journal on Mathematics Education*,*41*(1), 161–181.English, L. D. (2009b). Modeling with complex data in the primary school. In R. Lesh, P. Galbraith, W. Blum, & A. Hurford (Eds.),

*Modeling Students’ Mathematical Modeling Competencies: ICTMA 13*. Springer.English, L. D., & Halford, G. S. (1995).

*Mathematics Education: Models and Processes*. Mahwah, New Jersey: Lawrence Erlbaum Associates.English, L. D., & Watters, J. J. (2005). Mathematical modeling in the early school years.

*Mathematics Education Research Journal*,*16*(3), 58–79.English, L. D., Lesh, R. A., & Fennewald, T. (2008).

*Future directions and perspectives for problem solving research and curriculum development*. Paper presented for TSG 19 at the International Congress on Mathematical Education. Monterrey, Mexico, July 6–13.*Enhancing the Teaching and Learning of Early Statistical Reasoning in European Schools*(2009). Project: http://www.earlystatistics.net/ (accessed 20 March, 2009).Franklin, C. A., & Garfield, J. (2006). The GAISE project: Developing statistics education guidelines for grades pre-K-12 and college courses. In G. Burrill & P. Elliott (Eds.),

*Thinking and Reasoning with Data and Chance*(68th Yearbook, pp. 345–376). Reston, VA: National Council of Teachers of Mathematics.Freudenthal, H. (1973).

*Didactical Phenomenology of Mathematical Structures*. Boston: Kluwer.Gainsburg, J. (2006). The mathematical modeling of structural engineers.

*Mathematical Thinking and Learning*,*8*(1), 3–36.Ginsburg, H. P., Cannon, J., Eisenband, J. G., & Pappas, S. (2006). Mathematical thinking and learning. In K. McCartney & D. Phillips (Eds.),

*Handbook of Early Child Development*(pp. 208–230). Oxford, England: Blackwell.Gravemeijer, K. (1999). How emergent models may foster the construction of formal mathematics.

*Mathematical Thinking and Learning*,*1*, 155–177.Greer, B. (1997). Modeling reality in mathematics classroom: The case of word problems.

*Learning and Instruction*,*7*, 293–307.Greer, B., Verschaffel, L., & Mukhopadhyay, S. (2007). Modelling for life: Mathematics and children’s experience. In W. Blum, W. Henne, & M. Niss (Eds.),

*Applications and Modelling in Mathematics Education*(ICMI Study 14, pp. 89–98). Dordrecht: Kluwer.Hamilton, E. (2007). What changes are needed in the kind of problem solving situations where mathematical thinking is needed beyond school? In R. Lesh, E. Hamilton, & J. Kaput (Eds.),

*Foundations for the Future in Mathematics Education*(pp. 1–6). Mahwah, NJ: Lawrence Erlbaum.Hamilton, E., Lesh, R., Lester, F., & Yoon, C. (2007). The use of reflection tools in building personal models of problem solving. In R. Lesh, E. Hamilton, & J. Kaput (Eds.),

*Foundations for the Future in Mathematics Education*(pp. 349–366). Mahwah, NJ: Lawrence Erlbaum.Hutchins, E. (1995a).

*Cognition in the Wild*. Cambridge, MA: MIT Press.Hutchins, E. (1995b). How a cockpit remembers its speeds.

*Cognitive Science*,*19*, 265–288.Kaiser, G., & Maass, K. (2007). Modelling in lower secondary mathematics classroom—problems and opportunities. In W. Blum, W. Henne, & M. Niss (Eds.),

*Applications and Modelling in Mathematics Education*(ICMI Study 14, pp. 99–108). Dordrecht: Kluwer.Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education.

*ZDM*,*38*(3), 302–310.Kaiser, G., Blomhoj, M., & Sriraman, B. (2006). Towards a didactical theory for mathematical modelling.

*ZDM*,*38*(2), 82–85.Langrall, C., Mooney, E., Nisbet, S., & Jones, G. (2008). Elementary students’ access to powerful mathematical ideas. In L. D. English (Ed.),

*Handbook of International Research in Mathematics Education*(2nd ed.). NY: Routledge.Lehrer, R., & Schauble, L. (2004). Modeling natural variation through distribution.

*American Educational Research Journal*,*41*(3), 635–679.Lehrer, R., & Schauble, L. (2005). Developing modeling and argument in the elementary grades. In T. Romberg, T. Carpenter, & F. Dremock (Eds.),

*Understanding Mathematics and Science Matters*(pp. 29–53). NJ: Erlbaum.Lehrer, R., Giles, N. D., & Schauble, L. (2002). Children’s work with data. In

*Investigating Real Data in the Classroom: Expanding Children’s Understanding of Math and Science*(pp. 1–26). Columbia Univ.: Teachers College.Lesh, R. (2006). Modeling students modeling abilities: The teaching and learning of complex systems in education.

*The Journal of the Learning Sciences*,*15*(1), 45–52.Lesh, R. (2007). Foundations for the future in engineering and other fields that are heavy users of mathematics, science, and technology. In R. Lesh, E. Hamilton, & J. Kaput (Eds.),

*Foundations for the Future in Mathematics Education*(pp. vii–x). Mahwah, NJ: Lawrence Erlbaum.Lesh, R. (2008). Directions for future research and development in engineering education. In J. Zawojewski, H. Diefes-Dux, & K. Bowman (Eds.),

*Models and Modeling in Engineering Education: Designing Experiences for All Students*. Rotterdam: Sense Publications.Lesh, R., & Doerr, H. (2003). Foundation of a models and modeling perspective on mathematics teaching and learning. In R. A. Lesh & H. Doerr (Eds.),

*Beyond Constructivism: A Models and Modeling Perspective on Mathematics Teaching, Learning, and Problem Solving*(pp. 9–34). Mahwah, NJ: Erlbaum.Lesh, R., & English, L. D. (2005). Trends in the evolution of models and modeling perspectives on mathematical learning and problem solving. In H. Chick & J. Vincent (Eds.),

*Proceedings of the 29th Annual Conference of the International Group for the Psychology of Mathematics Education*(pp. 192–196). University of Melbourne.Lesh, R., & Sriraman, B. (2005). John Dewey revisited—pragmatism and the models-modeling perspective on mathematical learning. In A. Beckmann, C. Michelsen, & B. Sriraman (Eds.),

*Proceedings of the 1*^{st}*International Symposium of Mathematics and Its Connections to the Arts and Sciences*(pp. 7–31). Schwöbisch Gmund, Germany: The University of Education.Lesh, R., & Zawojewski, J. S. (2007). Problem solving and modeling. In F. Lester (Ed.),

*The Second Handbook of Research on Mathematics Teaching and Learning*(pp. 763–804). Charlotte, NC: Information Age Publishing.Lesh, R., Cramer, K., Doerr, H. M., Post, T., & Zawojewski, J. S. (2003a). Model development sequences. In R. A. Lesh & H. Doerr (Eds.),

*Beyond Constructivism: A Models and Modeling Perspective on Mathematics Teaching, Learning, and Problem Solving*(pp. 35–58). Mahwah, NJ: Erlbaum.Lesh, R., Zawojewski, J. S., & Carmona, G. (2003b). What mathematical abilities are needed for success beyond school in a technology-based age of information? In R. Lesh & H. Doerr (Eds.),

*Beyond Constructivism: Models and Modeling Perspectives on Mathematic Problem Solving, Learning and Teaching*(pp. 205–222). Mahwah, NJ: Lawrence Erlbaum.Lesh, R., Middleton, J., Caylor, E., & Gupta, S. (2008). A science need: Designing tasks to engage students in modeling complex data.

*Educational Studies in Mathematics*,*68*(2), 113–130.Lester, F. K., & Charles, R. I. (Eds.) (2003).

*Teaching Mathematics Through Problem Solving: PreK-6*. Reston, VA: National Council of Teachers of Mathematics.Lester, F. K., & Kehle, P. E. (2003). From problem solving to modeling: The evolution of thinking about research on complex mathematical activity. In R. A. Lesh & H. M. Doerr (Eds.),

*Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching*(pp. 501–518). Mahwah, NJ: Lawrence Erlbaum Associates.Lester, F. K., Garofalo, J., & Kroll, D. L. (1989). Self-confidence, interest, beliefs, and metacognition: Key influences on problem solving behavior. In D. B. McLeod & V. M. Adams (Eds.),

*Affect and Mathematical Problem Solving: A New Perspective*(pp. 75–88). New York: Springer-Verlag.Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice versa.

*Educational Researcher*,*32*(1), 17–20.Maclean, R. (2001). Educational change in Asia: An overview.

*Journal of Educational Change*,*2*, 189–192.Meletiou-Mavrotheris, M., Paparistodemou, E., & Stylianou, D. (2009). Enhancing statistics instruction in elementary schools: Integrating technology in professional development.

*The Montana Mathematics Enthusiast*,*16*(1&2), 57–78.National Council of Teachers of Mathematics (2000).

*Principles and Standards for School Mathematics*. Reston, VA: Author.National Council of Teachers of Mathematics Standards (2008). http://standards.nctm.org/document/chapter3/index.htm (accessed: 23.03.09).

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, W. Henne, & M. Niss (Eds.),

*Applications and Modelling in Mathematics Education*(ICMI Study 14, pp. 3–33). Dordrecht: Kluwer.Nunes, T., & Bryant, P. (1996).

*Children Doing Mathematics*. Oxford: Blackwell.Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993).

*Street Mathematics and School Mathematics*. Cambridge, UK: Cambridge University Press.PISA (2006). (Programme for International Student Assessment: http://www.pisa.oecd.org/; accessed 26.03.09).

Polya, G. (1945).

*How to Solve It*. Princeton, NJ: Princeton University Press.Romberg, T. A., Carpenter, T. P., & Kwako, J. (2005). Standards-based reform and teaching for understanding. In T. A. Romberg, T. P. Carpenter, & F. Dremock (Eds.),

*Understanding Mathematics and Science Matters*. Mahwah, NJ: Lawrence Erlbaum Associates.Rubin, A. (2002). Interactive visualizations of statistical relationships: What do we gain? In

*Proceedings of the Sixth International Conference on Teaching Statistics*. Durban, South Africa.Sabelli, N. H. (2006). Complexity, technology, science, and education.

*The Journal of the Learning Sciences*,*15*(1), 5–9.Sawyer, R. K. (2007).

*Group Genius: The Creative Power of Collaboration*. New York: Basic Books.Saxe, G. (1991).

*Culture and Cognitive Development: Studies in Mathematical Understanding*. Hillsdale, NJ: Lawrence Erlbaum.Schoen, & Charles (Eds.) (2003).

*Teaching Mathematics Through Problem Solving: Grades 6–12*. Reston, VA: National Council of Teachers of Mathematics.Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.),

*Handbook of Research on Mathematics Teaching and Learning: A Project of the National Council of Teachers of Mathematics*(pp. 334–370). New York, NY: Macmillan Publishing Co.Silver, E. A. (1985). Research on teaching mathematical problem solving: Some under represented themes and needed directions. In E. A. Silver (Ed.),

*Teaching and Learning Mathematical Problem Solving. Multiple Research Perspectives*(pp. 247–266). Hillsdale, NJ: Lawrence Erlbaum Associates.Simon, H. (1978). Information-processing theory of human problem solving. In W. K. Estes (Ed.),

*Handbook of Learning and Cognitive Processes*(Vol.*5*, pp. 271–295). Hillsdale, NJ: Lawrence Erlbaum Associates.Sriraman, B., & Adrian, H. (2008). A critique and response to multicultural visions of globalization.

*Interchange*,*39*(1), 119–130.Sriraman, B., & Dahl, B. (2009). On bringing interdisciplinary ideas to gifted education. In L.V. Shavinina (Ed.),

*The International Handbook of Giftedness*(pp. 1235–1254). Springer Science & Business.Sriraman, B., & Steinthorsdottir, O. (2007). Research into practice: Implications of research on mathematics gifted education for the secondary curriculum. In C. Callahan & J. Plucker (Eds.),

*Critical Issues and Practices in Gifted Education: What the Research Says*(pp. 395–408). Prufrock Press.Steen, L. A. (Ed.) (2001).

*Mathematics and Democracy: The Case for Quantitative Literacy*. USA: National Council on Education and the Disciplines.Tan, J. (2002). Education in the twenty-first century: Challenges and dilemmas. In D. da Cunha (Ed.),

*Singapore in the New Millennium: Challenges Facing the Citystate*(pp. 154–186). Singapore: The Institute of Southeast Asian Studies.Third International Mathematics and Science Study (TIMSS) (2003). http://timss.bc.edu/timss2003i/intl_reports.html; accessed 26.03.09).

Van den Heuvel-Panhuzen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage.

*Educational Studies in Mathematics*,*54*, 9–35.Van Engen, H. (1949). An analysis of meaning in arithmetic.

*Elementary School Journal*,*49*, 321–329, 395–400.Watson, J., & Moritz, J. B. (2000). Developing concepts of sampling.

*JRME*,*31*(1), 44–70.Zawojewski, J., & McCarthy, L. (2007). Numeracy in practice.

*Principal Leadership*,*7*(5), 32–38.Zawojewski, J. S., Hjalmarson, M. A., Bowman, K. J., & Lesh, R. (2008). A modeling perspective on learning and teaching in engineering education. In J. S. Zawojewski, H. A. Diefes-Dux, & K. Bowman (Eds.),

*Models and Modeling in Engineering Education*. Rotterdam: Sense Publishers.

## Author information

### Authors and Affiliations

### Corresponding author

## Editor information

### Editors and Affiliations

## Rights and permissions

## Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

## About this chapter

### Cite this chapter

English, L., Sriraman, B. (2010). Problem Solving for the 21^{st} Century.
In: Sriraman, B., English, L. (eds) Theories of Mathematics Education. Advances in Mathematics Education. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00742-2_27

### Download citation

DOI: https://doi.org/10.1007/978-3-642-00742-2_27

Published:

Publisher Name: Springer, Berlin, Heidelberg

Print ISBN: 978-3-642-00741-5

Online ISBN: 978-3-642-00742-2

eBook Packages: Humanities, Social Sciences and LawEducation (R0)