Skip to main content

cnF2freq: Efficient Determination of Genotype and Haplotype Probabilities in Outbred Populations Using Markov Models

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

Abstract

We have applied and implemented HMM (Hidden Markov Model) algorithms to calculate QTL genotype probabilities from marker and pedigree data in general population structures. These algorithms have a linear complexity in memory. In nearly all experimental pedigrees they result in more precise genotype estimates than the most commonly used approaches for determining genotypes at non-marker positions in QTL analysis in outbred F 2 line intercrosses [1], which include an exponential complexity factor as well as a data-reducing sampling step [2]. With a proper choice of parameters, the results from the existing methods can also be reproduced exactly. We show how the relative run times differ by a factor of 50 when 24 SNP markers are used, with our run time practically independent of marker count. The new method can also provide multi-generational probability estimates and perform haplotype inference from unphased data, which further improves accuracy and flexibility. An important future application of this method is for computationally efficient QTL genotype estimation in maps based on data from SNP chips containing 1000s of markers with mixed information content, for which there are no other suitable methods available at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haley, C.S., Knott, S.A., Elsen, J.M.: Mapping Quantitative Trait Loci in Crosses Between Outbred Lines Using Least Squares. Genetics 136(3), 1195–1207 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Seaton, G., Haley, C.S., Knott, S.A., Kearsey, M., Visscher, P.M.: QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18(2), 339–340 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Doerge, R.W.: Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3(1), 43–52 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Lander, E.S., Botstein, D.: Mapping Mendelian Factors Underlying Quantitative Traits Using RFLP Linkage Maps. Genetics 121(1), 185–199 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Broman, K.W., Wu, H., Sen, S., Churchill, G.A.: R/qtl: QTL mapping in experimental crosses. Bioinformatics 19(7), 889–890 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Vignal, A., Milan, D., SanCristobal, M., Eggen, A.: A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34(3), 275–305 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Slate, J.: Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Molecular Ecology 14(2), 363–379 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Andersson, L., Georges, M.: Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5(3), 202–212 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Haldane, J.B.S.: The combination of linkage values, and the calculation of distances between the loci of linked factors. Journal of Genetics 8, 299–309 (1919)

    Article  Google Scholar 

  10. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  11. Lander, E.S., Green, P.: Construction of multilocus genetic linkage maps in humans. Proc. Natl. Acad Sci. U S A 84(8), 2363–2367 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)

    Article  Google Scholar 

  13. Broman, K.W.: Use of Hidden Markov Models for QTL mapping. Working Paper 125, John Hopkins University, Dept. of Biostatistics (2006)

    Google Scholar 

  14. Carlborg, O., Andersson, L., Kinghorn, B.: The Use of a Genetic Algorithm for Simultaneous Mapping of Multiple Interacting Quantitative Trait Loci. Genetics 155(4), 2003–2010 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ljungberg, K., Holmgren, S., Carlborg, O.: Simultaneous search for multiple QTL using the global optimization algorithm DIRECT. Bioinformatics 20(12), 1887–1895 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Sillanpaa, M.J., Arjas, E.: Bayesian Mapping of Multiple Quantitative Trait Loci From Incomplete Inbred Line Cross Data. Genetics 148(3), 1373–1388 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kerje, S., Carlborg, O., Schütz, K., Hartmann, C., Jensen, P., Andersson, L.: The twofold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34(4), 264–274 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Crooks, L., Sahana, G., de Koning, D.J., Sando Lund, M., Carlborg, O.: Comparison of analyses of the QTLMAS XII common data set II: genome-wide association and fine mapping (submitted) (2008)

    Google Scholar 

  19. Li, J., Jiang, T.: Efficient inference of haplotypes from genotypes on a pedigree. J. Bioinformatics and Computational Biology 1(1), 41–70 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12(5), 921–927 (1995)

    CAS  PubMed  Google Scholar 

  21. Clark, A.: Inference of haplotypes from PCR-amplified samples of diploid populations. Mol. Biol. Evol. 7(2), 111–122 (1990)

    CAS  PubMed  Google Scholar 

  22. Niu, T., Qin, Z.S., Xu, X., Liu, J.S.: Bayesian haplotype inference for multiple linked single-nucleotide polymorphisms. Am. J. Hum. Genet. 70(1), 157–169 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nettelblad, C., Holmgren, S., Crooks, L., Carlborg, Ö. (2009). cnF2freq: Efficient Determination of Genotype and Haplotype Probabilities in Outbred Populations Using Markov Models. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics