Advertisement

A Fast Heuristic Algorithm for the Composite Web Service Selection

  • Rong Wang
  • Chi-Hung Chi
  • Jianming Deng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5446)

Abstract

Composite Web Service selection is one of the most important issues in Web Service Composition. During the selection process, while the decision making during the selection process is much easy in the term of the functional properties of Web Service, it is very difficult in terms of the non-functional properties. In this paper, we investigate the problem of composite Web Service selection. We propose the utility function to be the evaluation standard as a whole by considering all QoS parameters of each component service based on the definition in [16]. We map the multi-dimensional QoS composite Web Service to the multi-dimensional multi-choice knapsack (MMKP). And we propose a fast heuristic algorithm with O(nlm+nllgn) complexity for solving the problem.

Keywords

Service Selection Composite Service Service Class Service Selection Problem Fast Heuristic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Drexel, A.: A simulated annealing approach to the multi-constraint zero-one knapsack problem. Annuals of Computing 40, 1–8 (1988)CrossRefGoogle Scholar
  2. 2.
    Ardagna, D., Pernici, B.: Global and local qoS guarantee in web service selection. In: Bussler, C.J., Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 32–46. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Lee, C.: On QoS management, PhD dissertation. School of Computer Science, Carnegie Mellon University (August 1999)Google Scholar
  4. 4.
    Casati, F., Shan, M.C.: Dynamic and Adaptive Composition of EServices. Information Systems 26(3), 143–162 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2002)zbMATHGoogle Scholar
  6. 6.
    Georgakopoulos, D., Schuster, H., Cichocki, A., Baker, D.: Managing Process and Service Fusion in Virtual Enterprises. Information System, Special Issue on Information System Support for Electronic Commerce 24(6), 429–456 (1999)Google Scholar
  7. 7.
    Issa, H., Assi, C., Debbabi, M.: QoS-aware middleware for Web services composition - A qualitative approach. In: Proceedings - International Symposium on Computers and Communications, Proceedings - 11th IEEE Symposium on Computers and Communications, ISCC 2006, pp. 359–364 (2006)Google Scholar
  8. 8.
    Jang, J.-H., Shin, D.-H., Lee, K.-H.: Fast Quality Driven Selection of composite Web services. In: Proceedings of ECOWS 2006: Fourth European Conference on Web Services, pp. 87–96 (2006)Google Scholar
  9. 9.
    Clabby, J.: Web Services Explained: Solutions and Applications for the Real World. Prentice Hall PTR, Englewood Cliffs (2002)Google Scholar
  10. 10.
    Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware Middleware for Web Services Composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  11. 11.
    Akbar, M.M., Manning, E.G., Shoja, G.C., Khan, S.: Heuristic solutions for the multiple-choice multi-dimension knapsack problem. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2074, p. 659. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Mostofa, A.M., Sohel, R.M., Kaykobad, M., Manning, E.G., Shoja, G.C.: Solving the Multidimensional Multiple-Choice Knapsack Problem by Constructing Convex Hulls. Computers and Operations Research 33(5), 1259–1273 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Magazine, M., Oguz, O.: A Heuristic Algorithm for Multi-Dimensional Zero-One Knapsack Problem. European Journal of Operational Research 16(3), 319–326 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Khan, S.: Quality Adaptation in a Multi-Session Adaptive Multimedia System: Model and Architecture. PhD Dissertation. Department of Electrical and Computer Engineering, University of Victoria (1998)Google Scholar
  15. 15.
    Liu, S.-L., Liu, Y.-X., Zhang, F.: Dynamic Web Services Selection Algorithm with QoS Global Optimal in Web Services Composition. Journal of Software 18(3), 646–656 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Yu, T., Zhang, Y., Lin, K.-J.: Efficient algorithms for Web services selection with end-to-end QoS constraints. ACM Transactions on the Web 1(1), 6 (2007)CrossRefGoogle Scholar
  17. 17.
    Yu, T.: Quality of Service (QoS) in Web Services Model, Architecture and Algorithms, lsdis.cs.uga.edu/lib/download/CSM+QoS-WebSemantics.pdf
  18. 18.
    Tsesmetzis, D., Roussaki, I., Sykas, E.: QoS-Aware Service Evaluation and Selection. European Journal of Operational Research 191(3), 1101–1112 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gao, Y., Na, J., Zhang, B., Yang, L., Gong, Q.: Optimal Web Services Selection Using Dynamic Programming. In: Proceedings of 11th IEEE Symposium on Computers and Communications, pp. 365–370 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rong Wang
    • 1
  • Chi-Hung Chi
    • 1
  • Jianming Deng
    • 2
  1. 1.School of SoftwareTsinghua UniversityBeijingChina
  2. 2.College of Software EngineeringSouthEast UniversityNanjingChina

Personalised recommendations