Semantic Service Discovery by Consistency-Based Matchmaking

  • Rajesh Thiagarajan
  • Wolfgang Mayer
  • Markus Stumptner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5446)


Automated discovery of web services with desired functionality is an active research area because of its role in realising the envisioned advantages of the semantic web, such as functional reuse and automated composition. Existing approaches generally determine matches by inferring subsumption relationships between a request and a service specification, but may return poor results if service profiles are overspecified or provide only partial information. We present a two-staged consistency-based matchmaking approach where services that potentially match the request are identified in the first stage, these services are queried for concrete information, and finally this information is used to determine the matches. We evaluate our matchmaking scheme in the context of the Discovery II and Simple Composition scenario proposed by the SWS Challenge group. Preliminary evaluation shows that our approach is robust while handling overspecified profiles, does not return false positives, and is able to handle partial information in service and requirements specification.


Constraint Satisfaction Problem Service Description Closed World Assumption Open World Assumption Discovery Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellwood, T., et al.: UDDI Version 3.0. Technical report, (July 2002)Google Scholar
  2. 2.
    Klusch, M., Fries, B., Sycara, K.P.: Automated semantic web service discovery with owls-mx. In: Proc. AAMAS (2006)Google Scholar
  3. 3.
    OWL-S: Semantic markup for web services (2004),
  4. 4.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic matching of web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Kawamura, T., Blasio, J.A.D., Hasegawa, T., Paolucci, M., Sycara, K.P.: Public Deployment of Semantic Service Matchmaker with UDDI Business Registry. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 752–766. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Grønmo, R., Jaeger, M.C.: Model-Driven Semantic Web Service Composition. In: APSEC 2005, pp. 79–86 (December 2005)Google Scholar
  7. 7.
    Li, L., Horrocks, I.: A software framework for matchmaking based on Semantic Web technology. In: Proc. of WWW, Budapest, pp. 331–339 (May 2003)Google Scholar
  8. 8.
    Wang, H., Li, Z.: A Semantic Matchmaking Method of Web Services Based On \(\mathcal{SHOIN}^{+}(D)*\). In: Proc. of IEEE APSCC, Guangzhou, China, pp. 26–33 (December 2006)Google Scholar
  9. 9.
    de Bruijn, J., Lara, R., Polleres, A., Fensel, D.: OWL DL vs. OWL flight: conceptual modeling and reasoning for the semantic Web. In: Proc. of WWW 2005 Conf., Chiba, Japan (May 2005)Google Scholar
  10. 10.
    Patel-Schneider, P.F., Horrocks, I.: A comparison of two modelling paradigms in the semantic web. J. Web Sem. 5(4), 240–250 (2007)CrossRefGoogle Scholar
  11. 11.
    Balzer, S., Liebig, T., Wagner, M.: Pitfalls of OWL-S: a practical semantic web use case.. In: Proc. ICSOC 2004, New York, NY, USA, pp. 289–298 (November 2004)Google Scholar
  12. 12.
    Grimm, S., Motik, B., Preist, C.: Matching Semantic Service Descriptions with Local Closed-World Reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 575–589. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Thiagarajan, R., Stumptner, M.: A Native Ontology Approach for Semantic Service Descriptions. In: Proc. of AOW 2006, Hobart, Australia, pp. 85–90 (2006)Google Scholar
  14. 14.
    Nguyen, K., Cao, J., Liu, C.: Semantic-enabled organization of web services. In: Zhang, Y., Yu, G., Bertino, E., Xu, G. (eds.) APWeb 2008. LNCS, vol. 4976, pp. 511–521. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Albert, P., Henocque, L., Kleiner, M.: Configuration Based Workflow Composition. In: Proc. of ICWS 2005 (July 2005)Google Scholar
  16. 16.
    Stumptner, M., Friedrich, G., Haselböck, A.: Generative constraint-based configuration of large technical systems. AIEDAM 12(4) (1998)Google Scholar
  17. 17.
    Thiagarajan, R., Stumptner, M., Mayer, W.: Semantic Web Service Composition by Consistency-based Model Refinement. In: Proc. of IEEE APSCC, Tsukuba Science City, Japan (December 2007)Google Scholar
  18. 18.
    Thiagarajan, R., Stumptner, M.: Service Composition With Consistency-based Matchmaking: A CSP-based Approach. In: Proc. ECOWS (2007)Google Scholar
  19. 19.
    Zaremba, M., Vitvar, T., Moran, M.: Towards optimized data fetching for service discovery. In: Proc. ECOWS, Halle, Germany (November 2007)Google Scholar
  20. 20.
    Carman, M., Serafini, L.: Planning For Web Services the Hard Way. In: SAINT Workshops, Orlando, FL, USA (January 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rajesh Thiagarajan
    • 1
  • Wolfgang Mayer
    • 1
  • Markus Stumptner
    • 1
  1. 1.Advanced Computing Research CentreUniversity of South AustraliaAustralia

Personalised recommendations