An Approach to Detect Collaborative Conflicts for Ontology Development

  • Yewang Chen
  • Xin Peng
  • Wenyun Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5446)


Ontology has been widely adopted as the basis of knowledge sharing and knowledge-based public services. However, ontology construction is a big challenge, especially in collaborative ontology development, in which conflicts are often a problem. Traditional collaborative methods are suitable for centralized teamwork only, and are ineffective if the ontology is developed and maintained by mass broadly distributed participators lacking communications. In this kind of highly collaborative ontology development, automated conflicts detection is essential. In this paper, we propose an approach to classify and detect collaborative conflicts according to some mechanisms: 1) impact range of a revision, 2) semantic rules, and 3) heuristic similarity measures. Also we present a high effective detecting algorithm with evaluation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Noy, N.F., Chugh, A., Alani, H.: The CKC Challenge: Exploring Tools for Collaborative Knowledge Construction. IEEE Intelligent Systems 23(1), 64–68 (2008)CrossRefGoogle Scholar
  2. 2.
    Horrocks, Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A tool for social, semantic collaboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Haase, P., Stojanovic, L.: Consistent evolution of OWL ontologies. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bozsak, E., et al.: KAON - towards a large scale semantic web. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, p. 304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid. In: Proc. VLDB Conf., pp. 49–58 (September 2001)Google Scholar
  7. 7.
    Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit: Collaborative ontology development for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 221. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., Musen, M.A.: Creating Semantic Web Contents with Protege 2000. IEEE Intelligent Systems 16(2), 60–71 (2001)CrossRefGoogle Scholar
  9. 9.
    Web—ontology working group. OWL Web ontology Language Overview,
  10. 10.
    Hwang, S.-H., Kim, H.-G., Yang, H.-S.: A FCA-based ontology construction for the design of class hierarchy. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 827–835. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Ram, S., Park, J.: Semantic conflict resolution ontology (SCROL): an ontology for detecting and resolving data and schema-level semantic conflicts. IEEE Transactions on Knowledge and Data Engineering 16(2) (February 2004)Google Scholar
  12. 12.
    Bechhofer, S., Horrocks, I., Goble, C., Stevens, R.: OilEd: A reason-able ontology editor for the semantic web. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS, vol. 2174, p. 396. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yewang Chen
    • 1
  • Xin Peng
    • 1
  • Wenyun Zhao
    • 1
  1. 1.School of Computer ScienceFudan UniversityShanghaiChina

Personalised recommendations