Advertisement

Representing and Inferring Causalities among Classes of Multidimensional Data

  • Kun Yue
  • Mu-Jin Wei
  • Kai-Lin Tian
  • Wei-Yi Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5446)

Abstract

When adopting Bayesian network (BN) to represent and infer probabilistic causalities among multidimensional variables, the size of the conditional probability table (CPT) associated with each variable is doomed to be large, and the causality inferences cannot be done for arbitrary evidences. In this paper, we first extend the general BN by augmenting parameters for describing causalities among classes instead of specific instances of multidimensional variables. In the extended BN, called CBN, the CPT of a variable includes the probability of each class given parent classes, while a classifier of each variable is associated to determine the class that the given evidence belongs to. Further, we give the method for approximate inferences of the CBN for arbitrary evidences. Preliminary experiments verify the feasibility of our methods.

Keywords

Multidimensional random variable Class Bayesian network Approximate inference Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pedersen, T.B., Jensen, C.S.: Multidimensional data modeling for complex data. In: Proceedings of the 15th International Conference on Data Engineering (ICDE), pp. 336–345. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  2. 2.
    Han, J., Kamber, M.: Data mining: Concepts and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  3. 3.
    Heckerman, D., Wellman, M.P.: Bayesian networks. Communication of the ACM 38(3), 27–30 (1995)CrossRefGoogle Scholar
  4. 4.
    Pearl, J.: Probabilistic reasoning in intelligent systems: network of plausible inference. Morgan Kaufmann, San Mates (1988)zbMATHGoogle Scholar
  5. 5.
    Buntine, W.L.: A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering 8(2), 195–210 (1996)CrossRefGoogle Scholar
  6. 6.
    Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Bayesian network from data: An information-theory based approach. Artificial Intelligence 137(2), 619, 43–90 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cheng, J.: PowerConstructor system (1998), http://www.cs.ualberta.ca/~jcheng/bnpc.htm
  8. 8.
    Russel, S.J., Norvig, P.: Artificial intelligence – a modern approach. Pearson Education, Publishing as Prentice-Hall (2002)Google Scholar
  9. 9.
    Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42(2-3), 393–405 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Pearl, J.: Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence 32, 245–257 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, H., Hsu, W.: A survey on algorithms for real-time Bayesian network inference. In: Proc. of the joint AAAI-02/KDD-02/UAI-02 workshop on Real-Time Decision Support and Diagnosis Systems (2002)Google Scholar
  12. 12.
    Norsys Software Corp. Netica 3.17 Bayesian network software from Norsys (2007), http://www.norsys.com
  13. 13.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  14. 14.
    Murthy, S.K.: Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)CrossRefGoogle Scholar
  15. 15.
    Rastogi, R., Shim, K.: PUBLIC: A decision tree classifier that integrates building and pruning. In: Proceedings of the 14th International Conference on Data Engineering (ICDE), Florida, USA, pp. 404–415. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  16. 16.
    Alsabti, K., Ranka, S., Singh, V.: CLOUDS: A decision tree classifier for large datasets. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD), New York, USA, pp. 2–8. AAAI Press, Menlo Park (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Kun Yue
    • 1
  • Mu-Jin Wei
    • 1
  • Kai-Lin Tian
    • 2
  • Wei-Yi Liu
    • 1
  1. 1.Department of Computer Science and Engineering, School of Information Science and EngineeringYunnan UniversityKunmingP.R. China
  2. 2.Library of Southwest Forestry UniversityKunmingP.R. China

Personalised recommendations