Skip to main content

Abstract

Transthyretin (TTR) amyloidosis is caused by mutations in the TTR gene. Several observations, however, suggest the presence of factors, other than a mutation in the TTR gene, which affect TTR amyloid deposition. Although liver transplantation is the only curative treatment for TTR amyloidosis, its donor pool faces shortage, and TTR amyloid deposition continues in many patients after transplantation. Thus, some effective therapeutic strategies other than liver transplantation need to be developed. Mouse models of TTR amyloidosis would facilitate defining factors that accelerate amyloid deposition and would aid in developing effective treatments. Here, we summarize studies of transgenic mouse models of TTR amyloidosis in which questions were addressed about the role of various risk factors in the molecular pathogenesis of this intractable disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benson MD, Cohen AS (1977) Generalized amyloid in a family of Swedish origin: A study of 426 family members in seven generations of a new kinship with neuropathy nephropathy and central nervous system involvement. Ann Intern Med 86:419–424

    CAS  PubMed  Google Scholar 

  • Benson MD, Kincaid JC (2007) The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 36:411–423

    Article  CAS  PubMed  Google Scholar 

  • Benson MD, Kluve-Beckerman B, Zeldenrust SR. (2006) Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve 33:609–618

    Article  CAS  PubMed  Google Scholar 

  • Bergethon PR, Sabin TD, Lewis D. (1996) Improvement in the polyneuropathy associated with familial amyloid polyneuropathy after liver transplantation. Neurology 47:944–951

    CAS  PubMed  Google Scholar 

  • Bickerstaff MC, Botto M, Hutchinson WL. (1999) Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5:694–697

    Article  CAS  PubMed  Google Scholar 

  • Botto M, Hawkins PN, Bickerstaff MCM. (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nature Med 3:855–859

    Article  CAS  PubMed  Google Scholar 

  • Buxbaum J, Tagoe C, Gallo G. (2003) The pathogenesis of transthyretin tissue deposition: Lessons from transgenic mice. Amyloid 10(Suppl 1):2–6

    CAS  PubMed  Google Scholar 

  • Bygrave AE, Rose KL, Cortes-Hernandez J. (2004) Spontaneous autoimmunity in 129 and C57BL/6 mice-implications for autoimmunity described in gene-targeted mice. PLoS Biol 2:e243

    Article  PubMed  Google Scholar 

  • Cardoso I, Saraiva MJ (2006) Doxycycline disrupts transthyretin amyloid: Evidence from studies in a FAP transgenic mice model. FASEB J 20:234–239

    Article  CAS  PubMed  Google Scholar 

  • Episkopou V, Maeda S, Nishiguchi S. (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci USA 90:2375–2379

    Article  CAS  PubMed  Google Scholar 

  • Garlanda C, Bottazzi B, Bastone A. (2005) Pentraxins at the crossroads between innate immunity inflammation matrix deposition and female fertility. Annu Rev Immunol 23:337–366

    Article  CAS  PubMed  Google Scholar 

  • Holmgren G, Bergstrom S, Drugge U. (1992) Homozygosity for the transthyretin-Met30-gene in seven individuals with familial amyloidosis with polyneuropathy detected by restriction enzyme analysis of amplified genomic DNA sequences. Clin Genet 41:39–41

    Article  CAS  PubMed  Google Scholar 

  • Holmgren G, Ericzon B-G, Groth C-G. (1993) Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet 341:1113–1116

    Article  CAS  PubMed  Google Scholar 

  • Holmgren G, Wikström L, Lundgren HE. (2004) Discordant penetrance of the trait for familial amyloidotic polyneuropathy in two pairs of monozygotic twins. J Intern Med 256:453–456

    Article  CAS  PubMed  Google Scholar 

  • Horie K, Maeda S, Nishiguchi S. (1995) A replacement vector used to introduce subtle mutations into mouse genes. Gene 166:197–204

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga T, Wakasugi S, Inomoto T. (1989) Liver-specific and high-level expression of human serum amyloid P component gene in transgenic mice. Dev Genet 10:365–371

    Article  CAS  PubMed  Google Scholar 

  • Kohno K, Palha JA, Miyakawa K. (1997) Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy. Am J Pathol 150:1497–1508

    CAS  PubMed  Google Scholar 

  • Macedo B, Batista AR, Ferreira N. (2008) Anti-apoptotic treatment reduces transthyretin deposition in a transgenic mouse model of Familial Amyloidotic Polyneuropathy. Biochim Biophys Acta 1782:517–522

    CAS  PubMed  Google Scholar 

  • Marrack P, Kappler J, Kotzin BL (2001) Autoimmune disease: Why and where it occurs. Nat Med 7:899–905

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Yi S, Maeda S. (1992) Effect of serum amyloid P component level on transthyretin-derived amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Am J Pathol 141:451–456

    CAS  PubMed  Google Scholar 

  • Nagata Y, Tashiro F, Yi S. (1995) A 6-kb upstream region of the human transthyretin gene can direct developmental tissue-specific and quantitatively normal expression in transgenic mouse. J Biochem 117:169–175

    CAS  PubMed  Google Scholar 

  • Nakamura M, Ando Y, Nagahara S. (2004) Targeted conversion of the transthyretin gene in vitro and in vivo. Gene Ther 11:838–846

    Article  CAS  PubMed  Google Scholar 

  • Noguchi H, Ohta M, Wakasugi S. (2002) Effect of the intestinal flora on amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Exp Anim 51:309–316

    Article  CAS  PubMed  Google Scholar 

  • Olofsson BO, Backman C, Karp K. (2002) Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy Portuguese type. Transplantation 73:745–751

    Article  PubMed  Google Scholar 

  • Palha JA, Episkopou V, Maeda S. (1994) Thyroid hormone metabolism in a transthyretin-null mouse strain. J Biol Chem 269:33135–33139

    CAS  PubMed  Google Scholar 

  • Pepys MB, Booth DR, Hutchinson WL. (1997) Amyloid P component. A critical review. Amyloid 4:274–295

    CAS  Google Scholar 

  • Pepys MB, Herbert J, Hutchinson WL. (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417:254–259

    Article  CAS  PubMed  Google Scholar 

  • Rozzo SJ, Allard JD, Choubey D. (2001) Evidence for an interferon-inducible gene Ifi202 in the susceptibility to systemic lupus. Immunity 15:435–443

    Article  CAS  PubMed  Google Scholar 

  • Santos SD, Fernandes R, Saraiva MJ (2008) The heat shock response modulates transthyretin deposition in the peripheral and autonomic nervous systems. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2008.04.001 (in press)

    Google Scholar 

  • Sasaki H, Tone S, Nakazato M. (1986) Generation of transgenic mice producing a human transthyretin variant: A possible mouse model for familial amyloidotic polyneuropathy. Biochem Biophys Res Commun 139:794–799

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Maeda S, Murakami T. (1989) Transgenic mouse model of familial amyloidotic polyneuropathy. Mol Biol Med 6:333–343

    CAS  PubMed  Google Scholar 

  • Sigurdsson E, Wisniewski T, Frangione B (2002) Infectivity of amyloid diseases. Trends Mol Med 8:411–413

    Article  CAS  PubMed  Google Scholar 

  • Soma M, Tamaoki T, Kawano H. (2001) Mice lacking serum amyloid P component do not necessarily develop severe autoimmune disease. Biochem Biophys Res Commun 286:200–205

    Article  CAS  PubMed  Google Scholar 

  • Sousa MM, Fernandes R, Palha JA. (2002) Evidence for early cytotoxic aggregates in transgenic mice for human transthyretin Leu55Pro. Am J Pathol 161:1935–1948

    CAS  PubMed  Google Scholar 

  • Suhr O, Holmgren G, Steen L. (1995) Liver transplantation in familial amyloidotic polyneuropathy. Follow-up of the first 20 Swedish patients. Transplantation 60:933–938

    CAS  PubMed  Google Scholar 

  • Tagoe CE, French D, Gallo G. (2004) Amyloidogenesis is neither accelerated nor enhanced by injections of preformed fibrils in mice transgenic for wild-type human transthyretin: The question of infectivity. Amyloid 11:21–26

    Article  CAS  PubMed  Google Scholar 

  • Takaoka Y, Ohta M, Miyakawa K. (2004) Cysteine 10 is a key residue in amyloidogenesis of human transthyretin Val30Met. Am J Pathol 164:337–345

    CAS  PubMed  Google Scholar 

  • Takaoka Y, Tashiro F, Yi S, Maeda S, Shimada K, Takahashi K. (1997) Comparison of amyloid deposition in two lines of transgenic mouse that model familial amyloidotic polyneuropathy type I. Transgenic Res 6(4) 261–269

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki T, Tezuka H, Okada Y. (2005) Avoiding the effect of linked genes is crucial to elucidate the role of Apcs in autoimmunity. Nat Med 11:11–12

    Article  CAS  PubMed  Google Scholar 

  • Tashiro F, Yi S, Wakasugi S. (1991) Role of serum amyloid P component for systemic amyloidosis in transgenic mice carrying human mutant transthyretin gene. Gerontology 37(suppl 1):56–62

    Article  CAS  PubMed  Google Scholar 

  • Teng MH, Yin JY, Vidal R. (2001) Amyloid and nonfibrillar deposits in mice transgenic for wild-type human transthyretin: A possible model for senile systemic amyloidosis. Lab Invest 81:385–396

    CAS  PubMed  Google Scholar 

  • Tennent G, ALovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci USA 92:4299–4303

    Article  CAS  PubMed  Google Scholar 

  • Terazaki H, Ando Y, Fernandes R. (2006) Immunization in familial amyloidotic polyneuropathy: Counteracting deposition by immunization with a Y78F TTR mutant. Lab Invest 86: 23–31

    Article  CAS  PubMed  Google Scholar 

  • Togashi S, Lim S, Kawano H. (1997) Serum amyloid P component enhances induction of murine amyloidosis. Lab Invest 77:525–531

    CAS  PubMed  Google Scholar 

  • Ueda M, Ando Y, Hakamata Y. (2007) A transgenic rat with the human ATTR V30M: A novel tool for analyses of ATTR metabolisms. Biochem Biophys Res Commun 352:299–304

    Article  CAS  PubMed  Google Scholar 

  • Usui I, Kawano H, Ito S. (2001) Homozygous serum amyloid P component-deficiency does not enhance regression of AA amyloid deposits. Amyloid 8:101–104

    CAS  PubMed  Google Scholar 

  • Wakasugi S, Inomoto T, Yi S. (1987) A transgenic mouse model of familial amyloidotic polyneuropathy. Proc Japan Acad 63(B):344–347

    Article  Google Scholar 

  • Wakeland EK, Liu K, Graham RR. (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15:397–408

    Article  Google Scholar 

  • Wei L, Kawano H, Fu X. (2004) Deposition of transthyretin amyloid is not accelerated by the same amyloid in vivo. Amyloid 11:113–120

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Episkopou V, Piantedosi R. (1995) Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J Biol Chem 270:866–870

    Article  CAS  PubMed  Google Scholar 

  • Yamamura K, Tashiro F, Wakasugi S. (1990) Transgenic mouse model of autosomal dominant disease: Familial amyloidotic polyneuropathy. In: Beyreuther K Schttler G (ed) Molecular Mechanisms of Aging (pp 146–154) Springer-Verlag, Heidelberg.

    Google Scholar 

  • Yi S, Takahashi K, Naito M. (1991) Systemic amyloidosis in transgenic mice carrying the human mutant transthyretin (Met 30) gene. Pathologic similarity to human familial amyloidotic polyneuropathy type I. Am J Pathol 138:403–412

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan; Grants-in-aids for Scientific Research (to SM); and by grants from the Ministry of Health, Labour and Welfare, Japan; the Amyloidosis Research Committee, Surveys and Research on Specific Diseases (to SM). We thank all our collaborators for their invaluable help and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichiro Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ito, S., Maeda, S. (2009). Mouse Models of Transthyretin Amyloidosis. In: Richardson, S.J., Cody, V. (eds) Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00646-3_16

Download citation

Publish with us

Policies and ethics