Skip to main content

Jamology: Physics of Self-driven Particles and Toward Solution of All Jams

  • Chapter

Abstract

Jamming phenomena are seen in various kinds of flow, such as vehicles on highway, pedestrians in a corridor, data packets in internet and productions in a supply chain network. Jamology is an interdisciplinary research of analyzing and solving these jams. In this study, vehicles, pedestrians, etc., are all regarded as selfdriven particles, which are active particles and do not satisfy the Newton’s laws in general. Dynamics of these particles are studied by using a rule-based model, i.e., cellular automata. In this paper, starting from the background of this research, a simple model, called the asymmetric simple exclusion process, is introduced as basis of all kinds of traffic flow. Then it is extended in order to account each traffic phenomenon in a realistic way. Comparison between theory and experiment shows that the models are able to capture fundamental features of observations.

Keywords

  • Cellular Automaton
  • Molecular Motor
  • Supply Chain Network
  • Cellular Automaton Model
  • Asymmetric Simple Exclusion Process

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-00644-9_15
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-00644-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199 (2000)

    CrossRef  MathSciNet  Google Scholar 

  2. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067 (2001)

    CrossRef  Google Scholar 

  3. Nishinari, K., Okada, Y., Schadschneider, A., Chowdhury, D.: Intracellular transport of single-headed molecular motors kif1a. Phys. Rev. Lett. 95, 118101 (2005)

    CrossRef  Google Scholar 

  4. Helbing, D., Lämmer, S., Witt, U., Brenner, T.: Network-induced oscillatory behavior in material flow networks and irregular business cycles. Phys. Rev. E 70(5), 56118 (2004)

    CrossRef  Google Scholar 

  5. Chowdhury, D., Nishinari, K., Schadschneider, A.: Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Transitions 77(5), 601–624 (2004)

    CrossRef  Google Scholar 

  6. Chowdhury, D., Schadschneider, A., Nishinari, K.: Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev. 2(4), 318–352 (2005)

    CrossRef  Google Scholar 

  7. Chowdhury, D., Guttal, V., Nishinari, K., Schadschneider, A.: A cellular-automata model of flow in ant trails: non-monotonic variation of speed with density. J. Phys. A: Math. Gen. 35, 573–577 (2002)

    CrossRef  MathSciNet  Google Scholar 

  8. Kunwar, A., John, A., Nishinari, K., Schadschneider, A., Chowdhury, D.: Collective traffic-like movement of ants on a trail: Dynamical phases and phase transitions. J. Phys. Soc. Jpn. 73, 2979–2985 (2004)

    CrossRef  MATH  Google Scholar 

  9. Tomoeda, A., Nishinari, K., Chowdhury, D., Schadschneider, A.: An information-based traffic control in a public conveyance system: Reduced clustering and enhanced efficiency. Physica A 384, 600–612 (2007)

    CrossRef  Google Scholar 

  10. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  11. Rajewsky, N., Santen, L., Schadschneider, A., Schreckenberg, M.: The asymmetric exclusion process: Comparison of update procedures. J. Stat. Phys. 92, 151 (1998)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Lighthill, M.J., Whitham, G.B.: On kinematic waves. ii. a theory of traffic flow on long crowded roads. Proc. Roy. Soc. A 229, 317–345 (1955)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Musha, T., Higuchi, H.: The 1/f fluctuation of a traffic current on an expressway. Jpn. J. Appl. Phys. 15, 1271–1275 (1976)

    CrossRef  Google Scholar 

  14. Kanai, M., Nishinari, K., Tokihiro, T.: Stochastic optimal velocity model and its long-lived metastability. Phys. Rev. E 72, 035102(R) (2005)

    CrossRef  Google Scholar 

  15. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Phenomenological study of dynamical model of traffic flow. J. Phys. I France 5, 1389 (1995)

    CrossRef  Google Scholar 

  16. Spitzer, F.: Interaction of markov processes. F. Spitzer. Adv. Math. 5, 246 (1970)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Nishinari, K., Sugawara, K., Kazama, T., Schadschneider, A., Chowdhury, D.: Modelling of self-driven particles: Foraging ants and pedestrians. Physica A 372, 132 (2006)

    CrossRef  Google Scholar 

  18. Wolf, D.E., Schreckenberg, M., Bachem, A.: Traffic and Granular Flow. World Scientific, Singapore (1996)

    Google Scholar 

  19. Schreckenberg, M., Sharma, S.D. (eds.): Pedestrian and Evacuation Dynamics. Springer, Heidelberg (2001)

    Google Scholar 

  20. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295, 507–525 (2001)

    CrossRef  MATH  Google Scholar 

  21. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)

    CrossRef  MATH  Google Scholar 

  22. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    CrossRef  Google Scholar 

  23. Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field ca model for evacuation dynamics. IEICE Trans. Inf. & Syst. E87-D, 726–732 (2004)

    Google Scholar 

  24. Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67, 056122 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishinari, K. (2009). Jamology: Physics of Self-driven Particles and Toward Solution of All Jams. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds) Distributed Autonomous Robotic Systems 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00644-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00644-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00643-2

  • Online ISBN: 978-3-642-00644-9

  • eBook Packages: EngineeringEngineering (R0)