Skip to main content

Subjective Timing Control in Synchronized Motion of Humans

A Basic Study for Human-Robot Interaction

  • Chapter
Book cover Distributed Autonomous Robotic Systems 8

Abstract

The purpose of this paper is to clarify the internal phase correction mechanisms for timing control in a synchronization tapping task. Here, the synchronization error (SE) is directly controlled using our experimental method, and its response is measured as the temporal development of the inter tap onset interval (ITI). As a result, two types of internal phase correction mechanism are revealed. The first type shows a strong negative correlation between SE change and ITI change, suggesting a simple negative feedback mechanism. The second one does not show this correlation and disappears under the dual task condition. These results suggest that there are two types of timing control mechanism in the phase correction of tapping task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Condon, W.S., Sander, L.W.: Neonate is synchronized adult speech. Science 183, 99–101 (1974)

    Article  Google Scholar 

  2. Matarazzo, J.D., Weitman, M., Saslow, G., Wiens, A.N.: Interviewer influence on durations of interviewee speech. Journal of Verbal Learning and Verbal Behaviour 1, 451–458 (1963)

    Article  Google Scholar 

  3. Webb, J.T.: Interview synchrony: An investigation of two speech rate measures in an automated standardized interview. In: Pope, B., Siegman, A.W. (eds.) Studies in dyadic communication. Pergamon Press, Oxford (1972)

    Google Scholar 

  4. Nagaoka, C., Komori, M., Nakamura, T., Draguna, M.R.: Effects of receptive listening on the congruence of speakers’ response latencies in dialogues. Psychological Reports 97, 265–274 (2005)

    Article  Google Scholar 

  5. Yamamoto, M., Watanabe, T.: Time lag effects of utterance to communicative actions on robot- human greeting interaction. In: Proc. of 12th IEEE Int. Workshop on Robot and Human Interactive Communication (ROMAN 2003), pp. 217–222 (2003)

    Google Scholar 

  6. Namera, K., Takasugi, S., Takano, K., Yamamoto, T., Miyake, Y.: Timing control of utterance and body motion in human-robot interaction. In: Proc. of 17th IEEE Int. Workshop on Robot and Human Interactive Communication (ROMAN 2008), pp. 119–123 (2008)

    Google Scholar 

  7. Dunlap, K.: Reactions to rhythmic stimuli, with attempt to synchronize. Psychological Review 17, 399–416 (1910)

    Article  Google Scholar 

  8. Repp, B.H.: Processes underlying adaptation to tempo changes in sensorimotor synchronization. Human Movement Science 20, 227–312 (2001)

    Article  Google Scholar 

  9. Thaut, M.H., Kenyon, G.P.: Rapid motor adaptations to subliminal frequency shifts in syncopated rhythmic sensorimotor synchronization. Human Movement Science 22, 321–338 (2003)

    Article  Google Scholar 

  10. Stevens, L.T.: On the time sense. Mind 11, 393–404 (1886)

    Article  Google Scholar 

  11. Fraiss, P.: The sensorimotor synchronization of rhythms. In: Requin, J. (ed.) Anticipation et comportement. Centre National, Paris (1966)

    Google Scholar 

  12. Ashersleben, G., Prinz, W.: Synchronizing actions with events: The role of sensory information. Perception & Psychophysics 57, 305–317 (1995)

    Google Scholar 

  13. Michon, J.A., Van der Valk, N.J.L.: A dynamic model of timing behavior. Acta Psychologica 27, 204–212 (1967)

    Article  Google Scholar 

  14. Mates, J.: A model of synchronization of motor acts to a stimulus sequence: 1. Timing and error corrections. Biological Cybernetics 70, 463–473 (1994a)

    Google Scholar 

  15. Mates, J.: A model of synchronization of motor acts to a stimulus sequence: 2. Stability analysis, error estimation and simulations. Biological Cybernetics 70, 475–484 (1994b)

    Google Scholar 

  16. Thaut, M.H., Miller, R.A., Schauer, L.M.: Multiple synchronization strategies in rhythmic sensorimotor tasks: Phase vs. period correction. Biological Cybernetics 79, 241–250 (1998)

    MATH  Google Scholar 

  17. Ivry, R.: Neural mechanisms of timing. Trends in Cognitive Science 1, 163–169 (1997)

    Article  Google Scholar 

  18. Mangels, J.A., Ivry, R., Naomi, S.: Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research 7, 15–39 (1998)

    Article  Google Scholar 

  19. Casini, L., Ivry, R.: Effects of divided attention on temporal processing in patients with Lesions of the cerebellum or frontal lobe. Neuropsychology 13, 10–21 (1999)

    Article  Google Scholar 

  20. Miyake, Y., Onishi, Y., Poeppel, E.: Two types of anticipation in synchronization tapping. Acta Neurobiologiae Experimentalis 64, 415–426 (2004)

    Google Scholar 

  21. Takano, K., Miyake, Y.: Two types of phase correction mechanism involved in synchronized tapping. Neuroscience Letters 417, 196–200 (2007)

    Article  Google Scholar 

  22. Baddeley, A.: Working Memory. Oxford University Press, New York (1986)

    Google Scholar 

  23. Nixon, P.D., Passingham, R.E.: The cerebellum and cognition: Cerebellar lesions impair sequence learning but not conditional visuomotor learning in monkeys. Neuropsychologia 38, 1054–1072 (2000)

    Article  Google Scholar 

  24. Lewis, P.A., Miall, R.C.: Overview: An image of human neural timing. In: Meck, W.H. (ed.) Functional and neural mechanisms of interval timing. CRC Press, Liverpool (2003)

    Google Scholar 

  25. Molinari, M., Leggio, M., Filippini, V., Gioia, M., Cerasa, A., Thaut, M.H.: Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Research Bulletin 67, 448–458 (2005)

    Article  Google Scholar 

  26. Osaka, N.: Brain and working memory - (in Japanese). Kyoto University Press, Kyoto (2000)

    Google Scholar 

  27. Baddeley, A.: Working memory. Comptes Rendus de l’Academie des Sciences – Series III – Science de la Vie 321, 167–173 (1998)

    Article  Google Scholar 

  28. Brown, S.W.: Attentional resources in timing: Interference effects in concurrent temporal and nontemporal working memory tasks. Perception & Psychophysics 59, 1118–1140 (1997)

    Google Scholar 

  29. Muto, Y., Miyake, Y., Poeppel, E.: Timing mechanism with cognition in complex in environment – (in Japanese). Transaction of the Society of Instrument and Control Engineers 43, 989–997 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nojima, M., Shimo, H., Miyake, Y. (2009). Subjective Timing Control in Synchronized Motion of Humans. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (eds) Distributed Autonomous Robotic Systems 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00644-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00644-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00643-2

  • Online ISBN: 978-3-642-00644-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics