Skip to main content

Nanomaterials Science with Radioactive Ion Beams

  • Chapter
  • First Online:

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

Abstract

Because of the size and mass of nanostructures, their electronic and magnetic property studies with conventional bulk measurement techniques are difficult or even impossible. New techniques, specifically designed for such tasks, are required. The use of radioactive ion beams for studying material properties is not yet widespread but is increasing. An important advantage of employing radioactive nuclei is the ability of detecting signals from a very low concentration of atomic impurities. It is evident that this has essential importance for the characterization, e.g., of semiconductors, because very low amounts of impurities may alter the system properties significantly. Naturally the radioactive isotopes used as dopant atoms also influence the electronic and optical properties of semiconductors according to their chemical nature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piercy GR, Brown F, Davies JA, McCargo M (1963) Experimental evidence for the increase of heavy ion ranges by channeling in crystalline structure. Phys Rev Lett 10: 399–400.

    Article  CAS  ADS  Google Scholar 

  2. Deicher M (2002) Radioactive isotopes in solid state physics. Europhys News 33.

    Google Scholar 

  3. Dendooven P (1997) The development and status of the IGISOL technique. Nucl Instrum Methods B 126: 182–189.

    Article  CAS  ADS  Google Scholar 

  4. Asahi K, Kobayashi Y, Ueno H, Yoshimi A, Sato W, Watanabe H, Miyoshi H, Kameda D (2001) Radioactive ion beams as microprobes into matter. Anal Sci 17: 613–616.

    Article  Google Scholar 

  5. http://www.ganil.fr/eurisol/EURISOLlinks.html

  6. Gelletly W (2001) Science with radioactive beams: the alchemist’s dream. Contemp Phys 42: 285–314.

    Article  CAS  ADS  Google Scholar 

  7. Hevesy GV (1920) Die Platzwechselgeschwindigkeit der Ionen im Kristall. Z Phys 2: 148–149.

    Article  ADS  Google Scholar 

  8. Jeong SC, et al. (2005) Measurement of diffusion coefficients in solids by the short-lived radioactive beam of 8Li. Nucl Instrum Methods B230: 596–600.

    ADS  Google Scholar 

  9. Voss T, Strohm A, Frank W (2003) Diffusion in polymer-derived Si-(B-)C-N ceramics, particularly amorphous Si29 B9 C41 N21. Z Metallkd 94: 419–423.

    CAS  Google Scholar 

  10. Laitinen P, Strohm A, Huikari J, Nieminen A, Voss T, Grodon C, Riihimäki I, Kummer M, Äystö J, Dendooven P, Räisänen J, Frank W, the ISOLDE Collaboration (2002) Self-diffusion of 31Si and 71Ge in relaxed Si0.20Ge0.80 layers. Phys Rev Lett 89: 085902-1–085902-4.

    Google Scholar 

  11. Beke DL, Erdélyi Z, Langer GA, Csik A, Katona GL (2005) Diffusion on the nanometer scale. Vacuum 80: 87–91.

    Article  CAS  Google Scholar 

  12. Domeij B, Björkqvist K (1965) Anisotropic emission of α-particles from a monocrystalline source. Phys Lett 14: 127–128; Uggerhøj E (1966) Orientation dependence of the emission of positrons and electrons from 64Cu embedded in single crystals. Phys Lett 22: 382–383; Astner G, Bergström I, Domeij B, Erikson L, Persson A (1965) Angular dependence of conversion electrons from a monocrystalline source. Phys Lett 14: 308–310.

    CAS  ADS  Google Scholar 

  13. Correia JG (1996) Radioactive ion beams for solid state research. Nucl Instrum Methods B 113: 501–506.

    Article  CAS  ADS  Google Scholar 

  14. Wahl U, Correia JG, Rita E, Alves E, Soares JC, DeVries B, Matias V, Vantomme A, the ISOLDE Collaboration (2004) Re*-cent emission channeling studies in wide band gap semiconductors. Hyperfine Int 159: 363–372.

    Article  CAS  ADS  Google Scholar 

  15. Miglierini M (2005) How can Mössbauer spectrometry contribute to the characterization of nanocrystalline alloys? Hyperfine Int 164: 41–49.

    Article  ADS  CAS  Google Scholar 

  16. Weyer G, Gunnlaugsson HP, Bharuth-Ram K, Dietrich M, Mantovan R, Naicker V, Naidoo D, Sielemann R (2004) Acceleration of diffusional jumps of interstitial Fe with increasing Ge concentration in Si1–x Gex alloys observed by Mössbauer spectroscopy. Hyperfine Int 158: 417–421.

    Article  CAS  ADS  Google Scholar 

  17. Forkel-Wirth D (1999) Exploring solid state physics properties with radioactive isotopes. Rep Prog Phys 62: 527–597.

    Article  CAS  ADS  Google Scholar 

  18. Samokhvalov V, Dietrich M, Schneider F, Unterricker S, the ISOLDE Collaboration (2005) The ferromagnetic semiconductor HgCr2Se4 as investigated with different nuclear probes by the PAC method. Hyperfine Int 160: 17–26.

    Article  CAS  ADS  Google Scholar 

  19. Manzhur Y, Prandolini MJ, Potzger K, Weber A, Zeitz WD, Bertschat HH, Dietrich M (2005) Surface and interface magnetism using radioactive probes. Hyperfine Int 160: 3–15.

    Article  CAS  ADS  Google Scholar 

  20. Agne T, Deicher M, Koteski V, Mahnke HE, Wolf H, Wichert T (2004) Structural properties of the donor indium in nanocrystalline ZnO. Hyperfine Int 159: 55–61.

    Article  CAS  ADS  Google Scholar 

  21. Kiefl RF, et al. (2003) Low-energy spin-polarized radioactive beams as a nano-scale probe of matter. Physica B326: 189–195; Low energy spin polarized radioactive beams as a probe of thin films and interfaces. Nucl Instrum Methods B204: 682–688.

    ADS  Google Scholar 

  22. Salman Z (2005) Thin films and nanostructures studied by β-NMR. TRIUMF Annual Financial and Administrative Report 2005: 30–33.

    Google Scholar 

  23. Somayajulu DRS, Lieb K-P (eds) (2005) Proceedings of the international workshop on nanomaterials, magnetic ions and magnetic semiconductors studied by hyperfine interactions. Hyperfine Int 160: 1.

    Google Scholar 

  24. Dalmer M, Vetter U, Restle M, Stötzler A, Hofsäss H, Ronning C, Moodley MK, Bharuth-Ram K, the ISOLDE Collaboration (1999) Combination of emission channeling, photoluminescence and Mössbauer spectroscopy to indentify rare earth defect complexes in semiconductors. Hyperfine Int 120–121: 347–352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyrki Räisänen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Räisänen, J. (2009). Nanomaterials Science with Radioactive Ion Beams. In: Hellborg, R., Whitlow, H., Zhang, Y. (eds) Ion Beams in Nanoscience and Technology. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00623-4_17

Download citation

Publish with us

Policies and ethics