Advertisement

Computing Argumentation Semantics in Answer Set Programming

  • Toshiko Wakaki
  • Katsumi Nitta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5447)

Abstract

We propose a simple and generic method for computing Dung’s standard argumentation semantics along with semi-stable semantics in Answer Set Programming (ASP). The different semantics captured by argumentation frameworks are all uniformly represented in our ASP setting. It is based on Caminada’s reinstatement labellings for argumentation frameworks as well as our method of computing circumscription in ASP. In our approach, a given argumentation framework is translated into a single normal logic program w.r.t. the chosen semantics whose answer set (if exists) yields an argument-based extension expressed by means of a reinstatement labelling for the semantics. We show soundness and completeness theorems for our translation, which allow us not only to compute argument-based extensions but also to decide whether an argument is sceptically or credulously accepted w.r.t. the chosen semantics. Based on our theorems, the prototype argumentation system was implemented using the ASP solver, DLV, whose evaluation results verified correctness of our approach.

Keywords

Logic Program Integrity Constraint Predicate Symbol Completeness Theorem Argumentation Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR 2004), pp. 59–64 (2004)Google Scholar
  2. 2.
    Caminada, M.: On the issue of reinstatement in argumentation. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 111–123. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Caminada, M.: Semi-stable semantics. In: Proceedings of the first International Conference on Computational Models of Argument (COMMA 2006), pp. 121–130. IOS Press, Amsterdam (2006)Google Scholar
  4. 4.
    Cayrol, C., Doutre, S., Mengin, J.: On decision problems related to the preferred semantics for argumentation frameworks. Journal of Logic and Computation 13(3), 377–403 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence 77, 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artificial Intelligence 141, 187–203 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for nonmonotonic reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 364–375. Springer, Heidelberg (1997), http://www.dbai.tuwien.ac.at/proj/dlv/ Google Scholar
  9. 9.
    Eiter, T., Polleres, A.: Towards automated integration of guess and check programs in answer set programming. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS, vol. 2923, pp. 100–113. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified boolean formulas. In: Proceedings of the first International Conference on Computational Models of Argument (COMMA 2006), pp. 133–144. IOS Press, Amsterdam (2006)Google Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the fifth International Conference and Symposium on Logic Programming (ICLP/SLP 1988), pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  12. 12.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lifschitz, V.: Computing circumscription. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI 1985), pp. 121–127 (1985)Google Scholar
  14. 14.
    McCarthy, J.: Applications of circumscription to formalizing commonsense knowledge. Artificial Intelligence 28, 89–116 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded semantics for normal logic programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 421–430. Springer, Heidelberg (1997), http://www.tcs.hut.fi/Software/smodels/ CrossRefGoogle Scholar
  16. 16.
    Nieves, J.C., Cortes, U., Osorio, M.: Preferred extensions as stable models. Theory and Practice of Logic Programming 8(4), 527–543 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4, pp. 218–319. Kluwer, Dordecht (2001)Google Scholar
  18. 18.
    Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense reasoning. Artificial Intelligence 123, 185–222 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wakaki, T., Inoue, K., Sakama, C., Nitta, K.: Computing preferred answer sets in answer set programming. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS (LNAI), vol. 2850, pp. 259–273. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Wakaki, T., Inoue, K.: Compiling prioritized circumscription into answer set programming. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 356–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Wakaki, T., Tomita, T.: Circumscriptive theorem prover based on integration of guess and check program. Transactions of the Japanese Society for Artificial Intelligence, pp. 472–481 (2006); also the revised version is, Wakaki, T., Tomita, T.: Circumscriptive theorem prover based on integration of guess and check program. Transactions of the Japanese Society for Artificial Intelligence 22(5), 472–481 (2007) (in Japanese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Toshiko Wakaki
    • 1
  • Katsumi Nitta
    • 2
  1. 1.Shibaura Institute of TechnologySaitamaJapan
  2. 2.Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations