Advertisement

A Japanese Input Method for Mobile Terminals Using Surface EMG Signals

  • Akira Hatano
  • Kenji Araki
  • Masafumi Matsuhara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5447)

Abstract

The common use of mobile terminals is for text input. However, mobile terminals cannot be equipped with sufficient amount of keys because of the physical restrictions. To solve this problem we developed an input method using surface electromyogram (sEMG), treating arm muscle movements as input signals. This method involves no physical keys and can be used to input Japanese texts. In our experiments, the system was capable of inputting Japanese characters with a finger motion recognition rate of approximately 80%.

Keywords

input method surface electromyogram new generation interfaces human interface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tanaka-Ishii, K., Inutsuka, Y., Takeichi, M.: Japanese input system with digits –Can Japanese be input only with consonants? In: Human Language Technology Conference, San Diego, USA, pp. 211–218 (2001)Google Scholar
  2. 2.
    Tanaka-Ishii, K., Inutsuka, Y., Takeichi, M.: Entering text using a four button device. In: The 19th International Conference on Computational Linguistics, Taipei, Taiwan, pp. 988–994 (2002)Google Scholar
  3. 3.
    T9. T9 text input home page, http://www.t9.com
  4. 4.
    Yoshida, H., Ujiie, H., Ishimura, K., Wada, M.: The estimation of muscle fatigue using chaos analysis. Journal of the Society of Biomechanisms 28(4), 201–212 (2004) (in Japanese)CrossRefGoogle Scholar
  5. 5.
    Suematsu, S., Yokoi, H.: A motion generating system for multi-fingered myoelectric hand. International Congress Series 1291, 257–260 (2006)CrossRefGoogle Scholar
  6. 6.
    Calhoun Gloria, L., McMillan Grant, R.: Hands-free input devices for wearable computers. In: Proceedings of Fourth Annual Symposium on Human Interaction with Complex Systems, pp. 118–123. IEEE, Dayton (1998)CrossRefGoogle Scholar
  7. 7.
    Costanza, E., Inverso, S.A., Allen, R.: Toward subtle intimate interfaces for mobile devices using an EMG controller. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Portland, Oregon, USA (2005)Google Scholar
  8. 8.
    Aso, S., Sasaki, A., Hashimoto, H., Ishii, C.: Driving Electric Car by Using EMG Interface. In: IEEE International Conferences on Cybernetics Intelligent Systems (CIS). IEEE, CD-ROM (2006)Google Scholar
  9. 9.
    Hatano, A., Araki, K., Masafumi, M.: A Japanese Input Method Using Surface EMG Signals. In: Hokkaido-section Joint Convention of the Institutes of Electrical and related Engineers, Sapporo, Japan, pp. 187–188 (2007)Google Scholar
  10. 10.
    Kudo, T., Kazawa, H.: Web Japanese N-gram Version 1. Gengo Shigen KyokaiGoogle Scholar
  11. 11.
    Oisaka Electronic Device Ltd. equipment: Personal-EMG, http://www.oisaka.co.jp/P-EMG.html
  12. 12.
    Matsuhara, M., Araki, K., Tochinai, K.: Evaluation of Number-Kanji Translation Method using Inductive Learning on E-mail. In: Proceedings of the IASTED International Conference on Artificial Intelligence And Soft Computing, Banff, Canada, pp. 487–493 (2000)Google Scholar
  13. 13.
    Matsuhara, M., Araki, K., Tochinai, K.: Effectiveness for machine translation method using inductive learning on number representation. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS, vol. 2557, pp. 648–659. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Akira Hatano
    • 1
  • Kenji Araki
    • 1
  • Masafumi Matsuhara
    • 2
  1. 1.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  2. 2.Department of Software and Information ScienceIwate Prefectural UniversityIwateJapan

Personalised recommendations