Prolegomena to Dynamic Epistemic Preference Logic

  • Satoru Suzuki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5447)


In this paper, we propose a new version of sound and complete dynamic epistemic preference logic (DEPL). Both preference logic and dynamic epistemic logic have gained considerable attention in linguistics, computer science and philosophy. Recently van Benthem and Liu proposed to integrate preference logic with dynamic epistemic logic. They called the resulting logic ‘dynamic epistemic upgrade logic (DEUL)’. DEUL cannot deal with the dynamic interactions between knowledge and preferences originating from decisions makings under other circumstances than certainty. On the other hand, DEPL can deal with the dynamic interactions between knowledge and preferences originating from decisions makings under certainty, risk, uncertainty and ignorance. So DEPL has much wider scope of application than DEUL. Providing DEPL with measurement-theoretic semantics enables it to deal with such wide scope of decision problems.


Decision Theory Wide Scope Proof System Epistemic Logic Preference Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolker, E.D.: Functions Resembling Quotients of Measures. Transactions of the American Mathematical Society 124, 292–312 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bolker, E.D.: A Simultaneous Axiomatisation of Utility and Subjective Probability. Philosophy of Science 34, 333–340 (1967)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boutilier, C.: Toward a Logic for Qualitative Decision Theory. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR 1994), Bonn, pp. 75–86 (1994)Google Scholar
  4. 4.
    Cantor, G.: Beiträge zur Begründung der Transfiniten Mengenlehre I. Mathematische Annalen 46, 481–512 (1895)CrossRefzbMATHGoogle Scholar
  5. 5.
    Chisholm, R.M., Sosa, E.: On the Logic of Intrinsically Better. American Philosophical Quarterly 3, 244–249 (1966)Google Scholar
  6. 6.
    Domotor, Z.: Axiomatisation of Jeffrey Utilities. Synthese 39, 165–210 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gerbrandy, J.D., Groeneveld, W.: Reasoning about Information Change. Journal of Logic, Language and Information 6, 147–169 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Halldén, S.: On the Logic of ‘Better’. CWK Gleerup, Lund (1957)Google Scholar
  9. 9.
    Halpern, J.Y.: Reasoning about Uncertainty. The MIT Press, Cambridge (2003)zbMATHGoogle Scholar
  10. 10.
    Hansson, S.O.: Preference Logic. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 4, pp. 319–393 (2001)Google Scholar
  11. 11.
    Hansson, S.O.: Preferences. In: Stanford Encyclopedia of Philosophy (2006)Google Scholar
  12. 12.
    Hölder, O.: Die Axiome der Quantität und die Lehre von Mass. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physikaliche Classe 53, 1–64 (1901)Google Scholar
  13. 13.
    Jeffrey, R.: A Note on the Kinematics of Preference. Erkenntnis 11, 135–141 (1977); rpt. in [16] pp. 238–244CrossRefGoogle Scholar
  14. 14.
    Jeffrey, R.: Axiomatising the Logic of Decision. In: Hooker, C.A., et al. (eds.) Foundations and Applications of Decision Theory, vol. 1. Kluwer, Dordrecht (1978); rpt. in [16] pp. 232–237Google Scholar
  15. 15.
    Jeffrey, R.: The Logic of Decision, Corrected Second Edition. University of Chicago Press, Chicago (1990)Google Scholar
  16. 16.
    Jeffrey, R.: Probability and the Art of Judgment. Cambridge UP, Cambridge (1992)CrossRefGoogle Scholar
  17. 17.
    Joyce, J.M.: The Foundations of Causal Decision Theory. Cambridge UP, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Krantz, D.H., et al.: Foundations of Measurement, vol. 1. Academic Press, New York (1971)Google Scholar
  19. 19.
    Luce, R.D., Raiffa, H.: Games and Decisions. John Wiley & Sons, Inc., New York (1957)zbMATHGoogle Scholar
  20. 20.
    Luce, R.D., et al.: Foundations of Measurement, vol. III. Academic Press, San Diego (1990)Google Scholar
  21. 21.
    Martin, R.M.: Intension and Decision. Prentice-Hall, Inc., Englewood Cliffs (1963)Google Scholar
  22. 22.
    Naumov, P.: Logic of Subtyping. Theoretical Computer Science 357, 167–185 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Plaza, J.A.: Logics of Public Communications. In: Emrich, M.L., et al. (eds.) Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems, pp. 201–216 (1989)Google Scholar
  24. 24.
    Ramsey, F.P.: Truth and Probability (1926). In: Mellor, D.H. (ed.) Philosophical Papers, pp. 52–94. Cambridge UP, Cambridge (1926)Google Scholar
  25. 25.
    Rescher, N.: Semantic Foundations of the Logic of Preference. In: Rescher, N. (ed.) The Logic of Decision and Action, pp. 37–62. University of Pittsburgh Press, Pittsburgh (1967)Google Scholar
  26. 26.
    Resnik, M.D.: Choices: An Introduction to Decision Theory. University of Minnesota Press, Minneapolis (1987)Google Scholar
  27. 27.
    Roberts, F.S.: Measurement Theory. Addison-Wesley, Reading (1979)Google Scholar
  28. 28.
    Scott, D.: Measurement Structures and Linear Inequalities. Journal of Mathematical Psychology 1, 233–247 (1964)CrossRefzbMATHGoogle Scholar
  29. 29.
    Segerberg, K.: Qualitative Probability in a Modal Setting. In: Fenstad, J.E. (ed.) Proceedings of the Second Scandinavian Logic Symposium, pp. 341–352. North-Holland, Amsterdam (1971)CrossRefGoogle Scholar
  30. 30.
    Suppes, P., et al.: Foundations of Measurement, vol. II. Academic Press, San Diego (1989)Google Scholar
  31. 31.
    Van Benthem, J., et al.: Preference Logic, Conditionals and Solution Concepts in Games. ILLC Prepublication Series PP-2005-28 (2005)Google Scholar
  32. 32.
    Van Benthem, J., Liu, F.: Dynamic Logic of Preference Upgrade. Journal of Applied Non-Classical Logic 17, 157–182 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Van Ditmarsch, H., et al.: Dynamic Epistemic Logic. Springer, Dordrecht (2007)CrossRefzbMATHGoogle Scholar
  34. 34.
    Von Wright, G.H.: The Logic of Preference. Edinburgh UP, Edinburgh (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Satoru Suzuki
    • 1
  1. 1.Faculty of Arts and SciencesKomazawa UniversityTokyoJapan

Personalised recommendations