Skip to main content

Underdetermined Instantaneous Audio Source Separation via Local Gaussian Modeling

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5441)

Abstract

Underdetermined source separation is often carried out by modeling time-frequency source coefficients via a fixed sparse prior. This approach fails when the number of active sources in one time-frequency bin is larger than the number of channels or when active sources lie on both sides of an inactive source. In this article, we partially address these issues by modeling time-frequency source coefficients via Gaussian priors with free variances. We study the resulting maximum likelihood criterion and derive a fast non-iterative optimization algorithm that finds the global minimum. We show that this algorithm outperforms state-of-the-art approaches over stereo instantaneous speech mixtures.

Keywords

  • Global Minimum
  • Nonzero Entry
  • Active Source
  • Source Separation
  • Blind Source Separation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zibulevsky, M., Pearlmutter, B.A., Bofill, P., Kisilev, P.: Blind source separation by sparse decomposition in a signal dictionary. In: Independent Component Analysis: Principles and Practice, pp. 181–208. Cambridge Press (2001)

    Google Scholar 

  2. Davies, M.E., Mitianoudis, N.: Simple mixture model for sparse overcomplete ICA. IEE Proceedings on Vision, Image and Signal Processing 151(1), 35–43 (2004)

    CrossRef  Google Scholar 

  3. Vincent, E.: Complex nonconvex l p norm minimization for underdetermined source separation. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 430–437. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Xiao, M., Xie, S., Fu, Y.: A statistically sparse decomposition principle for underdetermined blind source separation. In: Proc. Int. Symp. on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 165–168 (2005)

    Google Scholar 

  5. Belouchrani, A., Amin, M.G., Abed-Meraïm, K.: Blind source separation based on time-frequency signal representations. IEEE Trans. on Signal Processing 46(11), 2888–2897 (1998)

    CrossRef  Google Scholar 

  6. Arberet, S., Gribonval, R., Bimbot, F.: A robust method to count and locate audio sources in a stereophonic linear instantaneous mixture. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 536–543. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  7. Pham, D.T., Cardoso, J.F.: Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. on Signal Processing 49(9), 1837–1848 (2001)

    CrossRef  MathSciNet  Google Scholar 

  8. Vincent, E., Gribonval, R., Plumbley, M.D.: Oracle estimators for the benchmarking of source separation algorithms. Signal Processing 87(8), 1933–1950 (2007)

    CrossRef  MATH  Google Scholar 

  9. Pulkki, V., Karjalainen, M.: Localization of amplitude-panned virtual sources I: stereophonic panning. Journal of the Audio Engineering Society 49(9), 739–752 (2001)

    Google Scholar 

  10. Vincent, E., Gribonval, R., Févotte, C.: Performance measurement in blind audio source separation. IEEE Trans. on Audio, Speech and Language Processing 14(4), 1462–1469 (2006)

    CrossRef  Google Scholar 

  11. Yılmaz, O., Rickard, S.T.: Blind separation of speech mixtures via time-frequency masking. IEEE Trans. on Signal Processing 52(7), 1830–1847 (2004)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vincent, E., Arberet, S., Gribonval, R. (2009). Underdetermined Instantaneous Audio Source Separation via Local Gaussian Modeling. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00599-2_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00598-5

  • Online ISBN: 978-3-642-00599-2

  • eBook Packages: Computer ScienceComputer Science (R0)