Skip to main content

Bayesian Non-negative Matrix Factorization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5441))

Abstract

We present a Bayesian treatment of non-negative matrix factorization (NMF), based on a normal likelihood and exponential priors, and derive an efficient Gibbs sampler to approximate the posterior density of the NMF factors. On a chemical brain imaging data set, we show that this improves interpretability by providing uncertainty estimates. We discuss how the Gibbs sampler can be used for model order selection by estimating the marginal likelihood, and compare with the Bayesian information criterion. For computing the maximum a posteriori estimate we present an iterated conditional modes algorithm that rivals existing state-of-the-art NMF algorithms on an image feature extraction problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paatero, P., Tapper, U.: Positive matrix factorization: A nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  3. Sajda, P., Du, S., Parra, L.: Recovery of constituent spectra using non-negative matrix factorization. In: Wavelets: Applications in Signal and Image Processing, Proceedings of SPIE, vol. 5207, pp. 321–331 (2003)

    Google Scholar 

  4. Gaussier, E., Goutte, C.: Relation between PLSA and NMF and implication. In: Proceedings of the International SIGIR Conference on Research and Development in Information Retrieval, pp. 601–602 (2005)

    Google Scholar 

  5. Schmidt, M.N., Olsson, R.K.: Single-channel speech separation using sparse non-negative matrix factorization. In: ISCA International Conference on Spoken Language Processing, (INTERSPEECH) (2006)

    Google Scholar 

  6. Ochs, M.F., Stoyanova, R.S., Arias-Mendoza, F., Brown, T.R.: A new method for spectral decomposition using a bilinear bayesian approach. Journal of Magnetic Resonance 137, 161–176 (1999)

    Article  Google Scholar 

  7. Moussaoui, S., Brie, D., Mohammad-Djafari, A., Carteret, C.: Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling. IEEE Transactions on Signal Processing 54(11), 4133–4145 (2006)

    Article  Google Scholar 

  8. Chib, S.: Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90(432), 1313–1321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society 48(3), 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Sajda, P., Du, S., Brown, T.R., Stoyanova, R., Shungu, D.C., Mao, X., Parra, L.C.: Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Transactions on Medical Imaging 23(12), 1453–1465 (2004)

    Article  Google Scholar 

  11. Schmidt, M.N., Laurberg, H.: Nonnegative matrix factorization with gaussian process priors. Computational Intelligence and Neuroscience (February 2008)

    Google Scholar 

  12. Graham, D.B., Allinson, N.M.: Characterizing virtual eigensignatures for general purpose face recognition. In: Face Recognition: From Theory to Applications. Computer and Systems Sciences, vol. 163, pp. 446–456 (1998)

    Google Scholar 

  13. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems (NIPS), pp. 556–562 (2000)

    Google Scholar 

  14. Kim, D., Sra, S., Dhillon, I.S.: Fast Newton-type methods for the least squares nonnegative matrix approximation problem. In: Proceedings of SIAM Conference on Data Mining (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, M.N., Winther, O., Hansen, L.K. (2009). Bayesian Non-negative Matrix Factorization. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00599-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00598-5

  • Online ISBN: 978-3-642-00599-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics