Nonnegative Network Component Analysis by Linear Programming for Gene Regulatory Network Reconstruction

  • Chunqi Chang
  • Zhi Ding
  • Yeung Sam Hung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5441)

Abstract

We consider a systems biology problem of reconstructing gene regulatory network from time-course gene expression microarray data, a special blind source separation problem for which conventional methods cannot be applied. Network component analysis (NCA), which makes use of the structural information of the mixing matrix, is a tailored method for this specific blind source separation problem. In this paper, a new NCA method called nonnegative NCA (nnNCA) is proposed to take into account of the non-negativity constraint on the mixing matrix that is based on a reasonable biological assumption. The nnNCA problem is formulated as a linear programming problem which can be solved effectively. Simulation results on spectroscopy data and experimental results on time-course microarray data of yeast cell cycle demonstrate the effectiveness and anti-noise robustness of the proposed nnNCA method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savageau, M.A.: Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading (1976)MATHGoogle Scholar
  2. 2.
    Liebermeister, W.: Linear modes of gene expression determined by independent component analysis. Bioinformatics 18(1), 51–60 (2002)CrossRefGoogle Scholar
  3. 3.
    Lee, S.I., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology 4(11), 76 (2003)CrossRefGoogle Scholar
  4. 4.
    Abrard, F., Deville, Y.: Blind separation of dependent sources using the “time-frequency ratio of mixtures” approach. In: Proceedings of Seventh International Symposium on Signal Processing and Its Applications, pp. 81–84 (July 2003)Google Scholar
  5. 5.
    Chang, C.Q., Ren, J., Fung, P., Hung, Y., Shen, J., Chan, F.: Novel sparse component analysis approach to free radical EPR spectra decomposition. Journal of Magnetic Resonance 175(2), 242–255 (2005)CrossRefGoogle Scholar
  6. 6.
    Liao, J.C., Boscolo, R., Yang, Y.L., Tran, L.M., Sabatti, C., Roychowdhury, V.P.: Network component analysis: Reconstruction of regulatory signals in biological systems. Proceedings of the National Academy of Sciences of the United States of America 100(26), 15522–15527 (2003)CrossRefGoogle Scholar
  7. 7.
    Tran, L.M., Brynildsen, M.P., Kao, K.C., Suen, J.K., Liao, J.C.: gnca: A framework for determining transcription factor activity based on transcriptome: identifiability and numerical implementation. Metabolic Engineering 7, 128–141 (2005)CrossRefGoogle Scholar
  8. 8.
    Chang, C.Q., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component analysis for gene regulation networks. In: Proc. 2007 IEEE International Workshop on Machine Learning for Signal Processing, Thesaloniki, Greece (2007)Google Scholar
  9. 9.
    Chang, C.Q., Ding, Z., Hung, Y.S., Fung, P.C.W.: Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data. Bioinformatics 24, 1349 (2008)CrossRefGoogle Scholar
  10. 10.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC (2007)Google Scholar
  11. 11.
    Golub, G.H., van Loan, C.F.: Matrix Computation, 3rd edn. The Johns Hopkins University Press (1996)Google Scholar
  12. 12.
    Dantzig, G.: Linear Programming and Extensions. Princeton Univ. Pr., Princeton (1963)CrossRefMATHGoogle Scholar
  13. 13.
    Luenberger, D.: Introduction to Linear and Nonlinear Programming. Addison-Wesley Pub. Co., Reading (1973)MATHGoogle Scholar
  14. 14.
    GNU: GLPK (GNU Linear Programming Kit) [web page and software] (2008), http://www.gnu.org/software/glpk/glpk.html
  15. 15.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botsein, D., Futcher, B.: Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)CrossRefGoogle Scholar
  16. 16.
    Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chunqi Chang
    • 1
  • Zhi Ding
    • 2
  • Yeung Sam Hung
    • 1
  1. 1.Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong
  2. 2.Department of Electrical and Computer EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations