Skip to main content

Fast Parallel Estimation of High Dimensional Information Theoretical Quantities with Low Dimensional Random Projection Ensembles

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5441))

  • 3253 Accesses

Abstract

The estimation of relevant information theoretical quantities, such as entropy, mutual information, and various divergences is computationally expensive in high dimensions. However, for this task, one may apply pairwise Euclidean distances of sample points, which suits random projection (RP) based low dimensional embeddings. The Johnson-Lindenstrauss (JL) lemma gives theoretical bound on the dimension of the low dimensional embedding. We adapt the RP technique for the estimation of information theoretical quantities. Intriguingly, we find that embeddings into extremely small dimensions, far below the bounds of the JL lemma, provide satisfactory estimates for the original task. We illustrate this in the Independent Subspace Analysis (ISA) task; we combine RP dimension reduction with a simple ensemble method. We gain considerable speed-up with the potential of real-time parallel estimation of high dimensional information theoretical quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.: The mathematical theory of communication. Bell System Technical Journal 27, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  2. Neemuchwala, H., Hero, A., Zabuawala, S., Carson, P.: Image registration methods in high-dimensional space. Int. J. Imaging Syst. and Technol. 16(5), 130–145 (2007)

    Article  Google Scholar 

  3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. of the ACM 45(6), 891 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz maps into a Hilbert space. Contemporary Mathematics 26, 189–206 (1984)

    Article  MATH  Google Scholar 

  5. Arriga, R.I., Vempala, S.: An algorithmic theory of learning: Robust concepts and random projections. Machine Learning 63, 161–182 (2006)

    Article  Google Scholar 

  6. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Structures and Algorithms 33(2), 142–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Vempala, S.S.: The Random Projection Method. DIMACS Series in Discrete Math., vol. 65 (2005), http://dimacs.rutgers.edu/Volumes/Vol65.html

  8. Baraniuk, R., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices (to appear, 2008)

    Google Scholar 

  9. Cardoso, J.: Multidimensional independent component analysis. In: ICASSP 1998, vol. 4, pp. 1941–1944 (1998)

    Google Scholar 

  10. Jutten, C., Hérault, J.: Blind separation of sources: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  11. Kybic, J.: High-dimensional mutual information estimation for image registration. In: ICIP 2004, pp. 1779–1782. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  12. Gaito, S., Greppi, A., Grossi, G.: Random projections for dimensionality reduction in ICA. Int. J. of Appl. Math. and Comp. Sci. 3(4), 154–158 (2006)

    Google Scholar 

  13. Bingham, E.: Advances in Independent Component Analysis with Applications to Data Mining. PhD thesis, Helsinki University of Technology (2003), http://www.cis.hut.fi/ella/thesis/

  14. Theis, F.J.: Uniqueness of complex and multidimensional independent component analysis. Signal Processing 84(5), 951–956 (2004)

    Article  MATH  Google Scholar 

  15. Theis, F.J.: Multidimensional independent component analysis using characteristic functions. In: EUSIPCO 2005 (2005)

    Google Scholar 

  16. Theis, F.J.: Blind signal separation into groups of dependent signals using joint block diagonalization. In: ISCAS 2005, Kobe, Japan, pp. 5878–5881 (2005)

    Google Scholar 

  17. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: NIPS 1996, vol. 8, pp. 757–763 (1996)

    Google Scholar 

  18. Szabó, Z., Póczos, B., Lőrincz, A.: Cross-entropy optimization for independent process analysis. In: Rosca, J.P., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS, vol. 3889, pp. 909–916. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Póczos, B., Lőrincz, A.: Independent subspace analysis using k-nearest neighborhood distances. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 163–168. Springer, Heidelberg (2005)

    Google Scholar 

  20. Szabó, Z., Póczos, B., Lőrincz, A.: Undercomplete blind subspace deconvolution. J. of Machine Learning Res. 8, 1063–1095 (2007)

    MATH  Google Scholar 

  21. Kozachenko, L.F., Leonenko, N.N.: On statistical estimation of entropy of random vector. Problems Infor. Transmiss. 23(2), 95–101 (1987)

    MATH  Google Scholar 

  22. Hero, A., Ma, B., Michel, O., Gorman, J.: Applications of entropic spanning graphs. Signal Processing 19(5), 85–95 (2002)

    Article  Google Scholar 

  23. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  24. Learned-Miller, E.G., Fisher III, J.W.: ICA using spacings estimates of entropy. J. of Machine Learning Res. 4, 1271–1295 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Bach, F.R., Jordan, M.I.: Beyond independent components: Trees and clusters. J. of Machine Learning Res. 4, 1205–1233 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Póczos, B., Szabó, Z., Kiszlinger, M., Lőrincz, A.: Independent process analysis without a priori dimensional information. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 252–259. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szabó, Z., Lőrincz, A. (2009). Fast Parallel Estimation of High Dimensional Information Theoretical Quantities with Low Dimensional Random Projection Ensembles. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00599-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00598-5

  • Online ISBN: 978-3-642-00599-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics