We present the first effectively presentable fully abstract model for Stark’s Reduced ML, the paradigmatic higher-order programming language combining call-by-value evaluation and integer-valued references. The model is constructed using techniques of nominal game semantics. Its distinctive feature is the presence of carefully restricted information about the store in plays, combined with conditions concerning the participants’ ability to distinguish reference names. This leads to an explicit characterization of program equivalence.


Operational Semantic Nominal General Reference Reduction Rule Explicit Characterization Game Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L.: Applying game semantics to compositional software modeling and verification. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 421–435. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Abramsky, S., Ghica, D.R., Murawski, A.S., Ong, C.-H.L., Stark, I.D.B.: Nominal games and full abstraction for the nu-calculus. In: Proc. of LICS, pp. 150–159 (2004)Google Scholar
  3. 3.
    Abramsky, S., Honda, K., McCusker, G.: Fully abstract game semantics for general references. In: Proc. of LICS, pp. 334–344 (1998)Google Scholar
  4. 4.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163, 409–470 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with active expressions. In: Algol-like languages, Birkhaüser, pp. 297–329 (1997)Google Scholar
  6. 6.
    Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Honda, K., Yoshida, N.: Game-theoretic analysis of call-by-value computation. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 225–236. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Hyland, J.M.E., Ong, C.-H.L.: On Full Abstraction for PCF. Information and Computation 163(2), 285–408 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Laird, J.: A game semantics of local names and good variables. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 289–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Laird, J.: A game semantics of names and pointers. Annals of Pure and Applied Logic 151, 151–169 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    McCusker, G.: Games for recursive types. BCS Distinguished Dissertation. Cambridge University Press, Cambridge (1998)Google Scholar
  13. 13.
    McCusker, G.: Games and full abstraction for FPC. Information and Computation 160(1-2), 1–61 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    McCusker, G.: On the semantics of Idealized Algol without the bad-variable constructor. In: Proc. of MFPS. ENTCS, vol. 83 (2003)Google Scholar
  15. 15.
    Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press, Cambridge (1990)Google Scholar
  16. 16.
    Moggi, E.: Notions of computation and monads. Information and Computation 93, 55–92 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Murawski, A.S.: Functions with local state: regularity and undecidability. Theoretical Computer Science 338(1/3), 315–349 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Murawski, A.S.: Bad variables under control. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 558–572. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Nickau, H.: Hereditarily sequential functionals. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 253–264. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  20. 20.
    Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state. In: Higher-Order Operational Techniques in Semantics, pp. 227–273. CUP (1998)Google Scholar
  21. 21.
    Reynolds, J.C.: The essence of Algol. In: de Bakker, J.W., van Vliet, J. (eds.) Algorithmic Languages, pp. 345–372. North Holland, Amsterdam (1978)Google Scholar
  22. 22.
    Stark, I.D.B.: Names and Higher-Order Functions. PhD thesis, University of Cambridge (1995)Google Scholar
  23. 23.
    Tzevelekos, N.: Full abstraction for nominal general references. In: Proc. of LICS, pp. 399–410 (2007)Google Scholar
  24. 24.
    Tzevelekos, N.: Nominal game semantics. D.Phil. thesis, University of Oxford (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrzej S. Murawski
    • 1
  • Nikos Tzevelekos
    • 1
  1. 1.Computing LaboratoryOxford UniversityOxfordUK

Personalised recommendations