We show how solutions to many recursive arena equations can be computed in a natural way by allowing loops in arenas. We then equip arenas with winning functions and total winning strategies. We present two natural winning conditions compatible with the loop construction which respectively provide initial algebras and terminal coalgebras for a large class of continuous functors. Finally, we introduce an intuitionistic sequent calculus, extended with syntactic constructions for least and greatest fixed points, and prove it has a sound and (in a certain weak sense) complete interpretation in our game model.


Open Functor Game Model Linear Logic Initial Move Winning Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abel, A., Altenkirch, T.: A predicative strong normalisation proof for a lambda-calculus with interleaving inductive types. In: Coquand, T., Nordström, B., Dybjer, P., Smith, J. (eds.) TYPES 1999. LNCS, vol. 1956, pp. 21–40. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Abramsky, S.: Semantics of interaction: an introduction to game semantics. In: Semantics and Logics of Computation, pp. 1–31 (1996)Google Scholar
  3. 3.
    Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. J. Symb. Log. 59(2), 543–574 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Abramsky, S., Jagadeesan, R., Malacaria, P.: Full Abstraction for PCF. Info. & Comp. (2000)Google Scholar
  5. 5.
    Abramsky, S., Kohei, H., McCusker, G.: A fully abstract game semantics for general references. In: LICS, pp. 334–344 (1998)Google Scholar
  6. 6.
    Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 92–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Clairambault, P., Harmer, R.: Totality in Arena Games (submitted, 2008)Google Scholar
  8. 8.
    Conway, J.H.: On Numbers and Games. AK Peters, Ltd. (2001)Google Scholar
  9. 9.
    De Lataillade, J.: Second-order type isomorphisms through game semantics. Ann. Pure Appl. Logic 151(2-3), 115–150 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dybjer, P.: Inductive sets and families in Martin-Löfs Type Theory and their set-theoretic semantics: An inversion principle for Martin-Lös type theory. Logical Frameworks 14, 59–79 (1991)Google Scholar
  11. 11.
    Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in type theory. J. Symb. Log. 65(2), 525–549 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Freyd, P.: Algebraically complete categories. In: Proc. 1990 Como Category Theory Conference, vol. 1488, pp. 95–104. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Godel, K.: Über eine bisher noch nicht bentzte Erweiterung des finiten Standpunktes. Dialectica (1958)Google Scholar
  14. 14.
    Harmer, R.: Innocent game semantics. Lecture notes (2004)Google Scholar
  15. 15.
    Harmer, R., Hyland, J.M.E., Melliès, P.-A.: Categorical combinatorics for innocent strategies. In: LICS, pp. 379–388 (2007)Google Scholar
  16. 16.
    Hyland, J.M.E.: Game semantics. Semantics and Logics of Computation (1996)Google Scholar
  17. 17.
    Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–408 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Joyal, A.: Remarques sur la théorie des jeux à deux personnes. Gaz. Sc. Math. Qu. (1977)Google Scholar
  19. 19.
    Laurent, O.: Classical isomorphisms of types. Mathematical Structures in Computer Science 15(5), 969–1004 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Loader, R.: Equational theories for inductive types. Ann. Pure Appl. Logic 84(2), 175–217 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lorenzen, P.: Logik und Agon. Atti Congr. Internat. di Filosofia (1960)Google Scholar
  22. 22.
    McCusker, G.: Games and full abstraction for FPC. Inf. Comput. 160(1-2), 1–61 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Melliès, P.-A.: Asynchronous games 4: A fully complete model of propositional linear logic. In: LICS, pp. 386–395 (2005)Google Scholar
  24. 24.
    Santocanale, L.: Free μ-lattices. J. Pure Appl. Algebra 168(2-3), 227–264 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5(2), 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pierre Clairambault
    • 1
  1. 1.PPS, Université Paris 7France

Personalised recommendations