Minimal Cost Reachability/Coverability in Priced Timed Petri Nets

  • Parosh Aziz Abdulla
  • Richard Mayr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5504)


We extend discrete-timed Petri nets with a cost model that assigns token storage costs to places and firing costs to transitions, and study the minimal cost reachability/coverability problem. We show that the minimal costs are computable if all storage/transition costs are non-negative, while even the question of zero-cost coverability is undecidable in the case of general integer costs.


  1. 1.
    Abdulla, P.A., Nylén, A.: Timed Petri Nets and BQOs. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. on Software Engineering 17(3), 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability problem of weighted timed automata. Formal Methods in System Design 31(2), 135–175 (2007)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bowden, F.D.J.: Modelling time in Petri nets. In: Proc. Second Australian-Japan Workshop on Stochastic Models (1996)Google Scholar
  7. 7.
    de Frutos Escrig, D., Ruiz, V.V., Alonso, O.M.: Decidability of Properties of Timed-Arc Petri Nets. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 187–206. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math. 35, 413–422 (1913)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ghezzi, C., Mandrioli, D., Morasca, S., Pezzè, M.: A unified high-level Petri net formalism for time-critical systems. IEEE Trans. on Software Engineering 17(2), 160–172 (1991)CrossRefGoogle Scholar
  10. 10.
    Jančar, P.: Decidability of a temporal logic problem for Petri nets. Theoretical Computer Science 74, 71–93 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 493. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Mayr, E.: An algorithm for the general Petri net reachability problem. SIAM Journal of Computing 13, 441–460 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Merlin, P., Farber, D.: Recoverability of communication protocols - implications of a theoretical study. IEEE Trans. on Computers, COM 24, 1036–1043 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Razouk, R., Phelps, C.: Performance analysis using timed Petri nets. In: Protocol Testing, Specification, and Verification, pp. 561–576 (1985)Google Scholar
  15. 15.
    Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. In: Proc. RP 2008, 2 nd Workshop on Reachability Problems (2008)Google Scholar
  16. 16.
    Ruiz, V.V., Gomez, F.C., de Frutos Escrig, D.: On non-decidability of reachability for timed-arc Petri nets. In: Proc. 8th Int. Workshop on Petri Net and Performance Models (PNPM 1999), Zaragoza, Spain, 8-10 October 1999, pp. 188–196 (1999)Google Scholar
  17. 17.
    Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in Petri nets. Acta Inf., 21 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Richard Mayr
    • 2
  1. 1.Uppsala UniversitySweden
  2. 2.University of EdinburghUK

Personalised recommendations