Spatiotemporal Saliency: Towards a Hierarchical Representation of Visual Saliency

  • Neil D. B. Bruce
  • John K. Tsotsos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5395)

Abstract

In prior work, we put forth a model of visual saliency motivated by information theoretic considerations [1]. In this effort we consider how this proposal extends to explain saliency in the spatiotemporal domain and further, propose a distributed representation for visual saliency comprised of localized hierarchical saliency computation. Evidence for the efficacy of the proposal in capturing aspects of human behavior is achieved via comparison with eye tracking data and a discussion of the role of neural coding in the determination of saliency suggests avenues for future research.

Keywords

Attention Saliency Spatiotemporal Information Theory Fixation Hierarchical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruce, N.D.B., Tsotsos, J.K.: Saliency Based on Information Maximization. In: Advances in Neural Information Processing Systems, vol. 18, pp. 155–162 (June 2006)Google Scholar
  2. 2.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  3. 3.
    Bruce, N.D.B., Tsotsos, J.K.: An information theoretic model of saliency and visual search. In: Paletta, L., Rome, E. (eds.) WAPCV 2007. LNCS, vol. 4840, pp. 171–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Tsotsos, J.K., Culhane, S., Yan Kei Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial intelligence 78, 507–545 (1995)CrossRefGoogle Scholar
  5. 5.
    Bell, A.J., Sejnowski, T.J.: The ‘Independent Components’ of Natural Scenes are Edge Filters. Vision Research 37(23), 3327–3338 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefPubMedGoogle Scholar
  7. 7.
    Wachtler, T., Lee, T.-W., Sejnowski, T.J.: The chromatic structure of natural scenes. J. Opt. Soc. Amer. A 18(1), 65–77 (2001)CrossRefGoogle Scholar
  8. 8.
    van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B 265, 359–366 (1998)CrossRefGoogle Scholar
  9. 9.
    Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11(2), 417–441 (1999)CrossRefPubMedGoogle Scholar
  10. 10.
    Itti, L., Baldi, P.: Bayesian Surprise Attracts Human Attention. In: Advances in Neural Information Processing Systems, vol. 19, pp. 547–554 (2006)Google Scholar
  11. 11.
    Yu, C., Levi, D.M.: Surround modulation in human vision unmasked by masking experiments. Nature 3(7), 724–728 (2000)Google Scholar
  12. 12.
    Williams, A.L., Singh, K.D., Smith, A.T.: Surround modulation measured with fMRI in the visual cortex. Journal of Neurophysiology 89(1), 525–533 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    Xing, J., Heeger, D.J.: Measurement and Modeling of Centre-Surround Suppression and Enhancement. Vision Research 41, 571–583 (2001)CrossRefPubMedGoogle Scholar
  14. 14.
    Shen, Z.M., Xu, W.F., Li, C.Y.: Cue-invariant detection of centre surround discontinuity by V1 neurons in awake macaque monkey. Journal of Physiology 583, 581–592 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yu, C., Klein, A.K., Levi, D.M.: Cross-and Iso-oriented surrounds modulate the contrast response function: The effect of surround contrast. Journal of Vision 3, 527–540 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    Petrov, Y., McKee, S.P.: The effect of spatial configuration on surround suppression of contrast sensitivity. Journal of Vision 6(3), 224–238 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Adini, Y., Sagi, D.: Recurrent networks in human visual cortex: psychophysical evidence. Journal of the Optical Society of America A 18(8), 2228–2236 (2001)CrossRefGoogle Scholar
  18. 18.
    Olzak, L.A., Laurinen, P.I.: Contextual Effects in fine spatial discriminations. Nature 381(6583), 607–609 (2005)Google Scholar
  19. 19.
    Cannon, M.W., Fullencamp, S.C.: A model for inhibitory lateral interaction effects in perceived contrast. Vision Research 36(8), 1115–1125 (1996)CrossRefPubMedGoogle Scholar
  20. 20.
    Xing, J., Heeger, D.J.: Centre-surround interactions in foveal and peripheral vision. Vision Research 40, 3065–3072 (2000)CrossRefPubMedGoogle Scholar
  21. 21.
    Yu, C., Klein, A.K., Levi, D.M.: Surround modulation of perceived contrast and the role of brightness induction. Journal of Vision 1, 18–31 (2001)CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang, B., Zheng, J., Watanabe, I., Maruko, I., Bi, H., Smith, E.L., Chino, Y.: Delayed maturation of receptive field centre/surround mechanisms in V2. Proceedings of the National Academy of Sciences 102(16), 5862–5867 (2005)Google Scholar
  23. 23.
    Solomon, S.G., Pierce, J.W., Lennie, P.: The impact of suppressive surrounds on chromatic properties of cortical neurons. Journal of Neuroscience 24(1), 148–160 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    Schein, S.J., Desimone, R.: Spectral properties of V4 Neurons in the macaque. Journal of Neuroscience 10(10), 3369–3389 (1990)PubMedGoogle Scholar
  25. 25.
    Kondo, H., Komatsu, H.: Suppression on neuronal responses by a metacontrast masking stimulus. Neuroscience Research 36(1), 27–33 (2000)CrossRefPubMedGoogle Scholar
  26. 26.
    Tadin, D., Lappin, J.S.: Optimal Size for perceiving motion decreases with contrast. Vision Research 45, 2059–2064 (2005)CrossRefPubMedGoogle Scholar
  27. 27.
    Born, R.T., Bradley, D.C.: Structure and Function of Visual Area MT. Annual Review of Neuroscience 28, 157–189 (2005)CrossRefPubMedGoogle Scholar
  28. 28.
    Huang, X., Albright, T.D., Stoner, G.R.: Adaptive Surround Modulation in Cortical Area MT. Neuron 53(5), 761–770 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Eifuku, S., Wurtz, R.H.: Response to Motion in Extrastriate Area MSTI: Centre-Surround Interactions. Journal of Neurophysiology 80(11), 282–296 (1998)PubMedGoogle Scholar
  30. 30.
    Foldiak, P., Young, M.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 895–898 (1995)Google Scholar
  31. 31.
    David, S.V., Vinje, W.E., Gallant, J.L.: Natural stimulus statistics alter the receptive field structure of v1 neurons. Journal of Neuroscience 24(31), 6991–7006 (2004)CrossRefPubMedGoogle Scholar
  32. 32.
    Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annual Review Neuroscience 24, 1193–1216 (2001)CrossRefGoogle Scholar
  33. 33.
    Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Proceedings of the National Academy of Science 102(16), 5862–5867 (2005)Google Scholar
  34. 34.
    Kreiman, G.: Neural coding: computational and biophysical perspectives. Physics of Life Reviews 2, 71–102 (2004)CrossRefGoogle Scholar
  35. 35.
    Sagi, D.: The combination of spatial frequency and orientation is effortlessly perceived. Perception and Psychophysics 43, 601–603 (1988)CrossRefPubMedGoogle Scholar
  36. 36.
    Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5, 1–7 (2004)CrossRefGoogle Scholar
  37. 37.
    Enns, J.T., Rensink, R.A.: Sensitivity to three-dimensional orientation in visual search. Psychological Science 1, 323–326 (1990)CrossRefGoogle Scholar
  38. 38.
    Ramachandran, V.S.: Perception of Shape from Shading. Nature, 163–166 (1988)Google Scholar
  39. 39.
    Hershler, O., Hochstein, S.: At first sight: a high-level pop out effect for faces. Vision Research 45(13), 1707–1724 (2005)CrossRefPubMedGoogle Scholar
  40. 40.
    Sergent, J., Ohta, S., MacDonald, B.: Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115(1), 15–36 (1992)PubMedGoogle Scholar
  41. 41.
    Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17(11), 4302–4311 (2006)Google Scholar
  42. 42.
    Grill-Spector, K., Sayres, R., Ress, D.: High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nature Neuroscience 9(9), 1177–1185 (2006)CrossRefPubMedGoogle Scholar
  43. 43.
    Wang, Q., Cavanagh, P., Green, M.: Familiarity and pop-out in visual search. Perception and Psychophysics 56(5), 495–500 (1994)CrossRefPubMedGoogle Scholar
  44. 44.
    Shen, J., Reingold, E.M.: Visual search asymmetry: the influence of stimulus familiarity and low-level features. Perception and Psychophysics 63(3), 464–475 (2001)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Neil D. B. Bruce
    • 1
  • John K. Tsotsos
    • 1
  1. 1.Department of Computer Science and Engineering and Centre for Vision ResearchYork UniversityTorontoCanada

Personalised recommendations