Relative Influence of Bottom-Up and Top-Down Attention

  • Matei Mancas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5395)


Attention and memory are very closely related and their aim is to simplify the acquired data into an intelligent structured data set. Two main points are discussed in this paper. The first one is the presentation of a novel visual attention model for still images which includes both a bottom-up and a top-down approach. The bottom-up model is based on structures rarity within the image during the forgetting process. The top-down information uses mouse-tracking experiments to build models of a global behavior for a given kind of image. The proposed models assessment is achieved on a 91-image database. The second interesting point is that the relative importance of bottom-up and top-down attention depends on the specificity of each image. In unknown images the bottom-up influence remains very important while in specific kinds of images (like web sites) top-down attention brings the major information.


Visual attention saliency bottom-up top-down mouse-tracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hollingworth, A.: Constructing visual representations from natural scenes: The roles of short- and long-term visual memory. Journal of Experimental Psychology: Human Perception and Performance 30, 519–537 (2004)PubMedGoogle Scholar
  2. 2.
    Chun, M.M., Jiang, Y.: Implicit, long-term spatial context memory. Journal of Experimental Psychology: Learning, Memory, & Cognition 29, 224–234 (2003)Google Scholar
  3. 3.
    Desimone, R.: Visual attention mediated by biased competition in extrastriate visual cortex. Phil. Trans. R. Soc. Lond. B 353, 1245–1255 (1998)CrossRefGoogle Scholar
  4. 4.
    Boynton, G.M.: Attention and visual perception. Current Opinion in Neurobiology 15, 465–469 (2005)CrossRefPubMedGoogle Scholar
  5. 5.
    Itti, L., Koch, C., Niebur, E.: Model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  6. 6.
    Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)CrossRefPubMedGoogle Scholar
  7. 7.
    Itti, L., Koch, C.: Computational modeling of visual attention. Nature RevNeuroscience 2(3), 194–203 (2001)Google Scholar
  8. 8.
    Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4(4), 219–270 (1985)PubMedGoogle Scholar
  9. 9.
    Milanese, R., Bost, J.M., Pun, T.: A bottom-up attention system for active vision. In: ECAI 1992, 10th European Conference on Artificial Intelligence, pp. 808–810 (1992)Google Scholar
  10. 10.
    Milanese, R.: Detecting salient regions in an image: from biological evidence to computer implementation. PhD Thesis, University of Geneva (1993)Google Scholar
  11. 11.
    Chauvin, A., Herault, J., Marendaz, C., Peyrin, C.: Natural scene perception: visual attractors and image processing. In: 7th Neural Computation and Psychology Workshop (2000)Google Scholar
  12. 12.
    Petkov, N., Westenberg, M.A.: Suppression of contour perception by band-limited noise and its relation to non-classical receptive field inhibition. Biological Cybernetics 88, 236–246 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    Le Meur, O.: Attention sélective en visualisation d’images fixes et animées affichées sur écran: Modèles et évaluation des performances – Applications. PhD Thesis, University of Nantes (2005)Google Scholar
  14. 14.
    Le Meur, O., Le Callet, P., Barba, D.: A spatio-temporal model of bottom-up visual selective attention: description and assessment. Vision Research (2007)Google Scholar
  15. 15.
    Mudge, T.N., Turney, J.L., Volz, R.A.: Automatic generation of salient features for the recognition of partially occluded parts. Robotica 5, 117–127 (1987)CrossRefGoogle Scholar
  16. 16.
    Osberger, W., Maeder, A.J.: Automatic identification of perceptually important regions in an image. In: 14th IEEE Int. Conference on Pattern Recognition (1998)Google Scholar
  17. 17.
    Walker, K.N., Cootes, T.F., Taylor, C.J.: Locating Salient Object Features. In: British Machine Vision Conference (1998)Google Scholar
  18. 18.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision 43(3), 145–175 (2001)CrossRefGoogle Scholar
  19. 19.
    Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. In: IEEE International Conference on Image Processing (2003)Google Scholar
  20. 20.
    Bruce, N., Jernigan, E.: Evolutionary design of context-free attentional operators. In: Proc. of the IEEE International Conference on Image Processing (2003)Google Scholar
  21. 21.
    Bruce, N., Tsotsos, J.K.: Saliency Based on Information Maximization. In: Proc. of the Neural Information Processing Systems (2005)Google Scholar
  22. 22.
    Liu, F., Gleicher, M.: Video Retargeting: Automating Pan-and-Scan. ACM Multimedia (2006)Google Scholar
  23. 23.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space Analysis. IEEE Trans. Pattern Analysis Machine Intell. 24(5), 603–619 (2002)CrossRefGoogle Scholar
  24. 24.
    Itti, L., Baldi, P.: Bayesian Surprise Attracts Human Attention. In: Advances in Neural Information Processing Systems (NIPS 2005), vol. 19, pp. 1–8. MIT Press, Cambridge (2006)Google Scholar
  25. 25.
    Stentiford, F.W.M.: An estimator for visual attention through competitive novelty with application to image compression. In: Picture Coding Symposium, pp. 25–27 (2001)Google Scholar
  26. 26.
    Boiman, O., Irani, M.: Detecting Irregularities in Images and in Video. In: International Conference on Computer Vision (ICCV) (2005)Google Scholar
  27. 27.
    Boiman, O., Irani, M.: Similarity by Composition. In: Neural Information Processing Systems (NIPS) (2006)Google Scholar
  28. 28.
    Mancas, M., Mancas-Thillou, C., Gosselin, B., Macq, B.: A rarity-based visual attention map - application to texture description. In: Proc. of IEEE International conference on Image Processing (ICIP) (2006)Google Scholar
  29. 29.
    Mancas, M., Gosselin, B., Macq, B.: A Three-Level Computational Attention Model. In: Proceedings of ICVS Workshop on Computational Attention & Applications (WCAA) (2007)Google Scholar
  30. 30.
    Mancas, M., Gosselin, B., Macq, B.: Perceptual Image Representation, EURASIP Journal of Image and Video Processing, Article ID 98181, doi:10.1155/2007/98181 (2007)Google Scholar
  31. 31.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matei Mancas
    • 1
  1. 1.Engineering Faculty of Mons (FPMs)MonsBelgium

Personalised recommendations