Skip to main content

Tissue-Derived Materials for Adipose Regeneration

  • Chapter
Bioengineering Research of Chronic Wounds

Abstract

Common chronic wounds, including pressure ulcers, diabetic foot ulcers, arterial and venous ulcers often involve damage to adipose tissue. In addition, defects or deficiencies in adipose tissue can occur due to lipoatrophies, trauma, and tumor resection. Clinical treatment options vary, but it is difficult to specifically regenerate or reconstruct adipose tissue. Materials that promote adipose regeneration have the potential to serve as alternatives or supplements to current treatments options. However, the majority of attempts to engineer adipose tissue have used standard synthetic or natural materials as scaffolds with little consideration of unique features of the adipose extracellular microenvironment. The extracellular matrix is different in composition and structure in every tissue and these differences play an important role in cell behavior and tissue function. An ideal material would account for these differences. Based on this knowledge a technique was developed where hydrogels can be extracted and assembled from any soft tissue. The structure, composition, and biological properties of these hydrogels vary depending on the tissue used for extraction and the mechanism of gelation. Hydrogels derived from adipose tissue using this technique promote greater preadipocyte differentiation in vitro and vascularized adipose formation in vivo than what has been observed with other materials in the absence of exogenous cells or growth factors. These complex, multi-component hydrogels hold great promise for soft tissue reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abberton, K.M., et al.: Myogel, a novel, basement membranerich, extracellular matrix derived from skeletal muscle, is highly adipogenic in vivo and in vitro. Cells Tissues Organs. 188, 347–358 (2008)

    Article  Google Scholar 

  2. Aumailley, M., et al.: A simplified laminin nomenclature. Matrix Biol. 24, 326–332 (2005)

    Article  Google Scholar 

  3. Barroso, M.M., et al.: Artificial laminin polymers assembled in acidic pH mimic basement membrane organization. J. Biol. Chem. 283, 11714–11720 (2008)

    Article  Google Scholar 

  4. Chaubey, A., et al.: Surface patterning: tool to modulate stem cell differentiation in an adipose system. J. Biomed. Mater. Res. B. Appl. Biomater. 84, 70–78 (2008)

    Google Scholar 

  5. Chavey, C., et al.: Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278, 11888–11896 (2003)

    Article  Google Scholar 

  6. Cheng, M.H., et al.: Dermis-derived hydrogels support adipogenesis in vivo. Journal of Biomedical Materials Research (in Press, 2009)

    Google Scholar 

  7. Chiu, Y.C., et al.: Formation of Microchannels in Poly(ethylene glycol) Hydrogels by Selective Degradation of Patterned Microstructures. Chemistry of Materials (in Press, 2009)

    Google Scholar 

  8. Cho, S.W., et al.: Engineered adipose tissue formation enhanced by basic fibroblast growth factor and a mechanically stable environment. Cell Transplant. 16, 421–434 (2007)

    Google Scholar 

  9. Cronin, K.J., et al.: New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials. Plast. Reconstr. Surg. 113, 260–269 (2004)

    Article  Google Scholar 

  10. Cronin, K.J., et al.: The role of biological extracellular matrix scaffolds in vascularized three-dimensional tissue growth in vivo. J. Biomed. Mater. Res. B. Appl. Biomater. 82, 122–128 (2007)

    Google Scholar 

  11. Dallabrida, S.M., et al.: Adipose tissue growth and regression are regulated by angiopoietin-1. Biochem. Biophys. Res. Commun. 311, 563–571 (2003)

    Article  Google Scholar 

  12. Dolderer, J.H., et al.: Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space. Tissue Eng. 13, 673–681 (2007)

    Article  Google Scholar 

  13. Dollfus, C., et al.: Correction of facial lipoatrophy using autologous fat transplants in HIV-infected adolescents. HIV Med. 10, 263–268 (2009)

    Article  Google Scholar 

  14. Freire, E., Coelho-Sampaio, T.: Self-assembly of laminin induced by acidic pH. J. Biol. Chem. 275, 817–822 (2000)

    Article  Google Scholar 

  15. Frye, C.A., et al.: Microvascular endothelial cells sustain preadipocyte viability under hypoxic conditions. In Vitro Cell Dev. Biol. Anim. 41, 160–164 (2005)

    Article  Google Scholar 

  16. Guerrerosantos, J., et al.: Classification and treatment of facial tissue atrophy in Parry-Romberg disease. Aesthetic. Plast. Surg. 31, 424–434 (2007)

    Article  Google Scholar 

  17. Guyuron, B., Majzoub, R.K.: Facial augmentation with core fat graft: a preliminary report. Plast. Reconstr. Surg. 120, 295–302 (2007)

    Article  Google Scholar 

  18. Hillel, A.T., et al.: Embryonic Germ Cells Are Capable of Adipogenic Differentiation. In Vitro and In Vivo. Tissue Eng. Part A (2008)

    Google Scholar 

  19. Hiraoka, Y., et al.: In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng. 12, 1475–1487 (2006)

    Article  Google Scholar 

  20. Kawaguchi, N., et al.: De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc. Natl. Acad. Sci. U. S. A. 95, 1062–1066 (1998)

    Article  Google Scholar 

  21. Kawaguchi, N., et al.: Reconstituted basement membrane potentiates in vivo adipogenesis of 3T3-F442A cells. Cytotechnology 31, 215–220 (1999)

    Article  Google Scholar 

  22. Kleinman, H.K., Martin, G.R.: Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378–386 (2005)

    Article  Google Scholar 

  23. Kleinman, H.K., et al.: Basement membrane complexes with biological activity. Biochemistry 25, 312–318 (1986)

    Article  Google Scholar 

  24. Knight, K.R., et al.: Vascularized tissue-engineered chambers promote survival and function of transplanted islets and improve glycemic control. FASEB J. 20, 565–567 (2006)

    Google Scholar 

  25. Kubo, Y., et al.: Organization of extracellular matrix components during differentiation of adipocytes in long-term culture. In Vitro Cell Dev. Biol. Anim. 36, 38–44 (2000)

    Article  Google Scholar 

  26. Lam, S.M., et al.: Limitations, complications, and long-term sequelae of fat transfer. Facial Plast. Surg. Clin. North Am. 16, 391–399 (2008)

    Article  Google Scholar 

  27. Niimi, T., et al.: Differentiation-dependent expression of laminin-8 (alpha 4 beta 1 gamma 1) mRNAs in mouse 3T3-L1 adipocytes. Matrix Biol. 16, 223–230 (1997)

    Article  Google Scholar 

  28. Patel, P.N., et al.: Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng. 11, 1498–1505 (2005)

    Article  Google Scholar 

  29. Patrick Jr., C.W., Wu, X.: Integrin-mediated preadipocyte adhesion and migration on laminin-1. Ann. Biomed. Eng. 31, 505–514 (2003)

    Article  Google Scholar 

  30. Phulpin, B., et al.: Rehabilitation of irradiated head and neck tissues by autologous fat transplantation. Plast. Reconstr. Surg. 123, 1187–1197 (2009)

    Article  Google Scholar 

  31. Piasecki, J.H., et al.: An experimental model for improving fat graft viability and purity. Plast. Reconstr. Surg. 119, 1571–1583 (2007)

    Article  Google Scholar 

  32. Piasecki, J.H., et al.: Purified viable fat suspended in matrigel improves volume longevity. Aesthet. Surg. J. 28, 24–32 (2008)

    Article  Google Scholar 

  33. Pu, L.L., et al.: Autologous fat grafts harvested and refined by the Coleman technique: a comparative study. Plast. Reconstr. Surg. 122, 932–937 (2008)

    Article  Google Scholar 

  34. Rophael, J.A., et al.: Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am. J. Pathol. 171, 2048–2057 (2007)

    Article  Google Scholar 

  35. Stosich, M.S., et al.: Vascularized adipose tissue grafts from human mesenchymal stem cells with bioactive cues and microchannel conduits. Tissue Eng. 13, 2881–2890 (2007)

    Article  Google Scholar 

  36. Tang, W., et al.: White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008)

    Article  Google Scholar 

  37. Torio-Padron, N., et al.: Engineering of adipose tissue by injection of human preadipocytes in fibrin. Aesthetic. Plast. Surg. 31, 285–293 (2007)

    Article  Google Scholar 

  38. Tzu, J., Marinkovich, M.P.: Bridging structure with function: structural, regulatory, and developmental role of laminins. Int. J. Biochem. Cell. Biol. 40, 199–214 (2008)

    Article  Google Scholar 

  39. Uriel, S.: Isolation and Characterization of Tissue Specific Basement Membrane Extracts. Biomedical Engineering. Illinois Institute of Technology, Chicago (2009) vol. Ph.D

    Google Scholar 

  40. Uriel, S., et al.: The role of adipose protein derived hydrogels in adipogenesis. Biomaterials 29, 3712–3719 (2008)

    Article  Google Scholar 

  41. Uriel, S., et al.: Extraction and Assembly of Tissue-Derived Gels for Cell Culture and Tissue Engineering. Tissue Eng. Part C Methods (2009)

    Google Scholar 

  42. Vashi, A.V., et al.: Adipose tissue engineering based on the controlled release of fibroblast growth factor-2 in a collagen matrix. Tissue Eng. 12, 3035–3043 (2006)

    Article  Google Scholar 

  43. Xu, Y., et al.: Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci. 9, 21 (2008)

    Article  Google Scholar 

  44. Yi, C.G., et al.: VEGF gene therapy for the survival of transplanted fat tissue in nude mice. J. Plast. Reconstr. Aesthet. Surg. 60, 272–278 (2007)

    Article  Google Scholar 

  45. Zhong, X., et al.: Improved fat graft viability by delayed fat flap with ischaemic pretreatment. J. Plast. Reconstr. Aesthet. Surg. 62, 526–531 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, M.D.MH., Uriel, S., Brey, E.M. (2009). Tissue-Derived Materials for Adipose Regeneration. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics