Skip to main content

Dynamic Behaviour of Metallic Hollow Sphere Structures

  • Chapter
Multifunctional Metallic Hollow Sphere Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The chapter focuses on the dynamic behaviour of metallic hollow sphere structures that constitute an innovative group of lightweight materials, combining high specific stiffness, good damping properties and the ability to absorb large amounts of energy at a constant low stress level. The chapter explains the methodology and results of computational experimenting to clarify and determine the individual influences on the macroscopic behaviour of MHSS, especially under dynamic loading conditions. In the beginning, the material strain rate dependency is described and formulated with several constitutive models. A very important factor at impact loading is material deformation capability and impact energy absorption, which directly influences the deceleration of impacting objects. The impact energy absorption of hollow sphere structures due to their plastic deformation under impact loading is emphasized. The second part of this chapter presents the computational results of metallic hollow sphere structures and their macroscopic behaviour under uniaxial dynamic loading conditions with additional material characterisation considering large strains. Furthermore, the influence of gas inside the metallic spheres on behaviour of metallic hollow sphere structures and their capability of impact energy absorption is addressed. Computational simulations show that it is possible to achieve different dynamic response of metallic hollow sphere structures when subjected to dynamic loading. The topology, wall thickness of spheres and strain rate sensitivity can be combined in a way that the structure response is adapted to a given engineering problem. The chapter concludes with a discussion of the advantages, disadvantages and limitations of dynamically loaded metallic hollow sphere structures and their computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenhof, W., Harte, A.M., Turchi, R.: Experimental and numerical compressive testing of aluminum foam filled mild steel tubular hat sections. In: Proceedings 7th International LS-DYNA Users Conference (2002)

    Google Scholar 

  2. Ashby, M.F., Evans, A., Fleck, N.A., et al.: Metal foams: a design guide. Elsevier Science, Burlington (2000)

    Google Scholar 

  3. Bodner, S.R., Symonds, P.S.: Experimental and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading. J. Appl. Mech. 29, 719–728 (1962)

    Google Scholar 

  4. Cias, A., Mitchell, S.C., Watts, A., et al.: Microstructure and mechanical properties of sintered (2-4)Mn-(06-08)C steels. Powder Metallurgy 42, 227–233 (1999)

    Article  CAS  Google Scholar 

  5. Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and applications of finite element analysis. John Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  6. Enterprise Gleich GmbH. Data Sheet. Kaltenkirchen (2006)

    Google Scholar 

  7. Fiedler, T.: Numerical and Experimental Investigation of Hollow Sphere Structures in Sandwich Panels, Ph.D. thesis, University of Aveiro, Aveiro (2008)

    Google Scholar 

  8. Fiedler, T., Öchsner, A., Grácio, J.: Numerical Investigations on the Mechanical Properties of Adhesively Bonded Hollow Sphere Structures. J. Compos. Mater. (accepted for publication) (2007)

    Google Scholar 

  9. Friedl, O., Motz, C., Peterlik, H., et al.: Experimental Investigation of Mechanical Properties of Metallic Hollow Sphere Structures. Metallurgical and Materials Transactions B 39, 135–146 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  11. Gierlich, D., Khn, C., Hackeschmidt, K., et al.: Mechanical properties of open-pored aluminium foams (Mechanische Kenndaten offenporiger Aluminiumschäume). Konstruktion 9, 69–74 (2004)

    Google Scholar 

  12. Hallquist, J.: LS-DYNA Keyword User’s Manual. Livermore Software Technology Corporation (2007)

    Google Scholar 

  13. Hallquist, J.O.: LS-DYNA theoretical manual. Livermore Software Technology Corporation. Livermore, California (1998)

    Google Scholar 

  14. Hallquist, J.O.: LS-DYNA keyword user’s manual. Livermore Software Technology Corporation. Livermore, California (2003)

    Google Scholar 

  15. Hosford, W.F.: Mechanical Behaviour of Materials. Cambridge University Press, New York (2005)

    Google Scholar 

  16. Jacob, P., Goulding, L.: An Explicit Finite Element Primer. NAFEMS, Glasgow (2002)

    Google Scholar 

  17. Jeandrau, J.P.: Analysis and design data for adhesively bonded joints. Int. J. Adhes Adhes 11, 71–79 (1991)

    Article  CAS  Google Scholar 

  18. Karagiozova, D., Yu, T.X., Gao, Z.Y.: Modelling of MHS cellular solid in large strains. Int. J. Mech. Sci. 48, 1273–1286 (2006)

    Article  Google Scholar 

  19. Kim, H.S., Khamis, M.A.: Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. Compos: Part A 32, 1311–1317 (2001)

    Article  Google Scholar 

  20. Litwin, L.: FIR and IIR digital filters. IEEE potentials magazine 19, 28–31 (2000)

    Article  Google Scholar 

  21. Neville, B.P., Rabiei, A.: Composite metal foams processed through powder metallurgy. Mater. Design 29, 388–396 (2008)

    Article  CAS  Google Scholar 

  22. Öchnser, A.: Experimentelle und numerische Untersuchung des elasto-plastischen Verhaltens zellularer Modellwerkstoffe, Ph.D. thesis. University Erlangen, Nuremberg (2003)

    Google Scholar 

  23. Ohrndorf, A., Schmidt, P., Krupp, U., et al.: Mechanische Untersuchungen eines geschlossenporigen Aluminiumschaums. In: Proceedings Werkstoffprüfung (2000)

    Google Scholar 

  24. Ren, Z.: Progressive fracturing under dynamic loading conditions, Ph.D. thesis. Swansea University, Swansea (1993)

    Google Scholar 

  25. Sanders, W.S., Gibson, L.J.: Mechanics of hollow sphere foams. Mater. Sci. Eng. A 347, 70–85 (2003)

    Article  Google Scholar 

  26. Song, B., Chen, W., Weerasooriya, T.: Quasi-Static and Dynamic Compressive Behaviors of a S-2 Glass/SC15 Composite. J. Compos. Mater. 37, 1723–1743 (2003)

    Article  CAS  Google Scholar 

  27. Vesenjak, M.: Computational modelling of cellular structure under impact conditions, Ph.D. thesis, Faculty of Mechanical Engineering, Maribor (2006)

    Google Scholar 

  28. Vesenjak, M., Öchsner, A., Ren, Z.: Behaviour of closed-cell foams under impact. In: Proceedings 2 Workshop on Advanced Computational Engineering Mechanics, pp. 195–224 (2005)

    Google Scholar 

  29. Vesenjak, M., Öchsner, A., Ren, Z.: Thermal Post-Impact Behavior of Closed-Cell Cellular Structures with Fillers – Part I. Mater. Sci. Forum 553, 196–201 (2007)

    Article  Google Scholar 

  30. Vesenjak, M., Žunič, Z., Öchsner, A., et al.: Thermal Post-Impact Behavior of Closed-Cell Cellular Structures with Fillers – Part II. Mater. Sci. Forum 553, 202–207 (2007)

    Article  Google Scholar 

  31. Vesenjak, M., Fiedler, T., Ren, Z., et al.: Behaviour of Syntactic and Partial Hollow Sphere Structures under Dynamic Loading. Adv. Eng. Mater. 10, 185–191 (2008)

    Article  Google Scholar 

  32. Vesenjak, M., Žunič, Z., Öchsner, A., et al.: Heat conduction in closed-cell cellular metals. Mater. Sci. Forum 36, 608–612 (2005)

    CAS  Google Scholar 

  33. Xue, Z., Vaziri, A., Hutchinson, J.W.: Materials with Application to Sandwich Plate Cores. CMES - Comp. Model Eng. 10, 79–95 (2005)

    Google Scholar 

  34. Zhao, H., Elnasri, I., Abdennadher, S.: An experimental study on the behaviour under impact loading of metallic cellular materials. Int. J. Mech. Sci. 47, 757–774 (2005)

    Article  Google Scholar 

  35. Zienkiewicz, G.C., Taylor, R.L.: Finite element method. The basis, vol. 1. Butterworth - Heinemann, Oxford (2000)

    Google Scholar 

  36. Zienkiwicz, O.C., Scot, F.C.: On the principle of repeatability and its application to the analysis of turbine and pump impellers. Int. J. Num. Methods Engng. 4, 445–452 (1972)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vesenjak, M., Fiedler, T., Ren, Z., Öchsner, A. (2009). Dynamic Behaviour of Metallic Hollow Sphere Structures. In: Öechsner, A., Augustin, C. (eds) Multifunctional Metallic Hollow Sphere Structures. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00491-9_8

Download citation

Publish with us

Policies and ethics