Designing a Visual Sensor Network Using a Multi-agent Architecture

  • Federico Castanedo
  • Jesús García
  • Miguel A. Patricio
  • José M. Molina
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 55)


An intelligent Visual Sensor Network (VSN) should consist of autonomous visual sensors, which exchange information with each other and have reasoning capabilities. The information exchanged must be fused and delivered to the end user as one unit. In this paper, we investigate the use of the Multi-Agent paradigm to enhance the fusion process in a VSN. A key issue in a VSN is to determine which information to exchange between nodes, what data to fuse and what information to present to the final user. These issues are investigated and reported in this paper and the benefits of an agent based VSN are also presented. The aim of the paper is to report how the multi-agent architecture contributes to solving VSNs problems. A real prototype of an intelligent VSN using the Multi-Agent paradigm has been implemented with the objective to enhance the data fusion process.


Data Fusion Visual Sensor Data Association Interface Agent Sensor Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patricio, M.A., Carbó, J., Pérez, O., García, J., Molina, J.M.: Multi-agent framework in visual sensor networks. EURASIP Journal on Advances in Signal Processing 2007, Article ID 98639, 21 pages (2007), doi:10.1155/2007/98639Google Scholar
  2. 2.
    Castanedo, F., Patricio, M.A., Garcia, J., Molina, J.M.: Robust data fusion in a visual sensor multi-agent architecture. In: 10th International Conference on Information Fusion (July 2007)Google Scholar
  3. 3.
    Hall, D.L., Llinas, J.: Handbook of MultiSensor Data Fusion. CRC Press, Boca Raton (2001)Google Scholar
  4. 4.
    Zhou, Q., Parrott, D., Gillen, M., Chelberg, D.M., Welch, L.: Agent-based computer vision in a dynamic, real-time environment. Pattern Recognition 37(4), 691–705 (2004)CrossRefGoogle Scholar
  5. 5.
    Quaritsch, M., Kreuzthaler, M., Rinner, B., Bischof, H., Strobl, B.: Autonomous Multicamera Tracking on Embedded Smart Cameras. EURASIP Journal on Embedded Systems 2007(1), 35–35 (2007)Google Scholar
  6. 6.
    Lesser, V., Ortiz, C.L., Tambe, M.: Distributed Sensor Networks: A Multiagent Perspective. Kluwer Academic Publishers, Dordrecht (2003)zbMATHGoogle Scholar
  7. 7.
    Berge-Cherfaoui, V., Vachon, B.: A multi-agent approach of the multi-sensor fusion. In: Fifth International Conference on Advanced Robotics. Robots in Unstructured Environments, ICAR, pp. 1264–1269 (1991)Google Scholar
  8. 8.
    FIPA. Fipa communicative act library specification (2001)Google Scholar
  9. 9.
    Pavón, J., Gómez-Sanz, J., Fernándex-Caballero, A., Valencia-Jiménez, J.J.: Development of intelligent multisensor surveillance systems with agents. Robotics and Autonomous Systems 55(12), 892–903 (2007)Google Scholar
  10. 10.
    Pavlidis, I., Morellas, V., Tsiamyrtzis, P., Harp, S.: Urban surveillance systems: from the laboratory to the commercial world. Proceedings of the IEEE 89(10), 1478–1497 (2001)CrossRefGoogle Scholar
  11. 11.
    Tsai, R.: A versatile camera calibration technique for high accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation 3(4), 323–344 (1987)CrossRefGoogle Scholar
  12. 12.
    Stein, G.P.: Tracking from multiple view points: Self-calibration of space and time. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 521–527 (1999)Google Scholar
  13. 13.
    Lee, L., Romano, R., Stein, G.: Monitoring Activities from Multiple Video Streams: Establishing a Common Coordinate Frame. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 758–767 (2000)CrossRefGoogle Scholar
  14. 14.
    Intille, S.S., Bobick, A.F.: Closed-world tracking. In: Proceedings of the Fifth International Conference on Computer Vision, pp. 672–678 (1995)Google Scholar
  15. 15.
    Reid, D.: An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control 24(6), 843–854 (1979)CrossRefGoogle Scholar
  16. 16.
    Streit, R.L., Luginbuhl, T.E.: Maximum likelihood method for probabilistic multihypothesis tracking. In: Proceedings of SPIE, vol. 2235, p. 394 (1994)Google Scholar
  17. 17.
    Bar-Shalom, Y., Tse, E.: Tracking in a cluttered environment with probabilistic data association. Automatica 11, 451–460 (1975)zbMATHCrossRefGoogle Scholar
  18. 18.
    Fortmann, T.E., Bar-Shalom, Y., Scheffe, M.: Multi-target tracking using joint probabilistic data association. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 807–812 (December 1980)Google Scholar
  19. 19.
    Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Transactions on Communications 39(10), 1482–1493 (1991)CrossRefGoogle Scholar
  20. 20.
    Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning technology. International Journal of Intelligent Systems 18(12), 1227–1241 (2003)CrossRefGoogle Scholar
  21. 21.
    Bratman, M.E.: Intentions, Plans and Practical Reasoning. Harvard University Press, Cambridge (1987)Google Scholar
  22. 22.
    Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceeedings of the Sixth National Conference on Artificial Intelligence (AAAI), pp. 677–682. AAAI Press, Menlo Park (1987)Google Scholar
  23. 23.
    Ingrand, F.F., Georgeff, M.P., Rao, A.S.: An architecture for real-time reasoning and system control. IEEE Expert, [see also IEEE Intelligent Systems and Their Applications] 7(6), 34–44 (1992)Google Scholar
  24. 24.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a bdi infraestructure for jade agents. Search of Innovation (Special Issue on JADE) 3(3), 76–85 (2003)Google Scholar
  25. 25.
    Multimedia Object Descriptions Extaction from Surveillance Types,
  26. 26.
    Graf, T., Knoll, A.: A Multi-Agent System Architecture for Distributed Computer Vision. International Journal on Artificial Intelligence Tools 9(2), 305–319 (2000)CrossRefGoogle Scholar
  27. 27.
    Castanedo, F., García, J., Patricio, M.A., Molina, J.M.: A multi-agent architecture to support active fusion in a visual sensor network. In: Second ACM/IEEE International Conference on Distributed Smart Cameras (September 2008)Google Scholar
  28. 28.
    Castanedo, F., Patricio, M.A., García, J., Molina, J.M.: Bottom-up/top-down coordination in a multiagent visual sensor network. In: IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS, pp. 93–98, September 5-7 (2007)Google Scholar
  29. 29.
  30. 30.
    JNI. Java native method invocation specification v1.1 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Federico Castanedo
    • 1
  • Jesús García
    • 1
  • Miguel A. Patricio
    • 1
  • José M. Molina
    • 1
  1. 1.Computer Science Department Grupo de Inteligencia Artificial Aplicada (GIIA)University Carlos III of Madrid 

Personalised recommendations