Advertisement

A Realistic Approach to Solve the Nash Welfare

  • A. Nongaillard
  • P. Mathieu
  • B. Jaumard
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 55)

Abstract

The multi-agent resource allocation problem is the negotiation of a set of resources among a population of agents, in order to maximize a social welfare function. The purpose of this study is the definition of the agent behavior which leads, if possible, to an optimal resource allocation at the end of the negotiation process as an emergent phenomenon. This process can be based on any kind of contact networks. Our study focuses on a specific notion: the Nash product, which has not the drawbacks of the other widely used notions. However, centralized approaches cannot handle large instances, since the social function is not linear. After a study of different bilateral transaction types, we underline the most efficient negotiation policy in order to solve the multi-agent resource allocation problem with the Nash product and provide an adaptive, scalable and anytime algorithm.

Keywords

Resource Allocation Negotiation Process Social Welfare Function Agent Behavior Contact Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Arrow, K., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare. Elsevier, Amsterdam (2002)Google Scholar
  3. 3.
    Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  4. 4.
    Bouveret, S., Lang, J.: Efficiency and envy-freeness in fair division of indivisible goods: logical representation and complexity. In: IJCAI 2005, pp. 935–940 (2005)Google Scholar
  5. 5.
    Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource allocation with k-additive utility functions. In: Proc. DIMACS-LAMSADE Workshop on Computer Science and Decision Theory. Annales du LAMSADE, vol. 3, pp. 83–100 (2004)Google Scholar
  6. 6.
    Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Reaching Envy-free States in Distributed Negotiation Settings. In: IJCAI 2007, pp. 1239–1244 (2007)Google Scholar
  7. 7.
    Chevaleyre, Y., Endriss, U., Lang, J., Maudet, N.: Negotiating over Small Bundles of Resources. In: AAMAS 2005, pp. 296–302 (2005)Google Scholar
  8. 8.
    Endriss, U., Maudet, N., Sadri, F., Toni, F.: Negotiating socially optimal allocations of resources. Journal of Artificial Intelligence Research 25, 315–348 (2006)MathSciNetGoogle Scholar
  9. 9.
    Estivie, S., Chevaleyre, Y., Endriss, U., Maudet, N.: How Equitable is Rational Negotiation? In: AAMAS 2006, pp. 866–873 (2006)Google Scholar
  10. 10.
    Fisher, M.: The Lagrangian Relaxation Method for Solving Integer Programming Problems. Management Science 50(13), 1861–1871 (2004)CrossRefGoogle Scholar
  11. 11.
    Hickernell, F., Yuan, Y.: A Simple Multistart Algorithm for Global Optimization. OR Transactions 1(2) (1997)Google Scholar
  12. 12.
    Miranda, P., Grabisch, M., Gil, P.: Axiomatic structure of k-additive capacities. Mathematical Social Sciences 49, 153–178 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Moulin, H.: Choosing from a Tournament. Social Choice and Welfare 3(4), 271–291 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nongaillard, A., Mathieu, P., Jaumard, B.: A Multi-Agent Resource Negotiation for the Utilitarian Welfare. In: ESAW 2008 (2008)Google Scholar
  15. 15.
    Nongaillard, A., Mathieu, P., Jaumard, B.: La négociation du bien-être social utilitaire. In: JFSMA 2008, EU, France, Brest, pp. 55–64 (2008)Google Scholar
  16. 16.
    Sandholm, T.: Contract Types for Satisficing Task Allocation: I Theoretical Results. In: AAAI Spring Symposium: Satisficing Models, vol. 99, pp. 68–75 (1998)Google Scholar
  17. 17.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence 135(1-2), 1–54 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. Nongaillard
    • 1
    • 2
  • P. Mathieu
    • 1
  • B. Jaumard
    • 3
  1. 1.LIFLUniversity of LilleVilleneuve d’AscqFrance
  2. 2.CSE 
  3. 3.CIISEConcordia UniversityMontrealCanada

Personalised recommendations