Advertisement

Induced Cultural Globalization by an External Vector Field in an Enhanced Axelrod Model

  • Arezky H. Rodríguez
  • M. del Castillo-Mussot
  • G. J. Vázquez
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 55)

Abstract

A new model is proposed, in the context of Axelrod’s model for the study of cultural dissemination, to include and external vector field (VF) which describes the effects of mass media on social systems. The VF acts over the whole system and it is characterized by two parameters: a non-null overlap with each agent in the society and a confidence value of its information. Beyond a threshold value of the confidence there is induced monocultural globalization of the system lined up with the VF. Below this value, the multicultural states are unstable and certain homogenization of the system is obtained in opposite line up according to that we have called negative publicity effect. Three regimes of behavior for the spread process of the VF information as a function of time are reported.

Keywords

Vector Field Effective Feature Cultural Trait Nominal Feature Cultural Globalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelrod, R.: J. Conflict Resolut. 41, 203 (1997)Google Scholar
  2. 2.
    Axelrod, R.: The Complexity of Cooperation. Princeton, New Jersey (1997)Google Scholar
  3. 3.
    Bateson, G.: Mind and Nature: A Necessary Unity. Bantam Books, Toronto (2002)Google Scholar
  4. 4.
    Boccara, N.: arXiv:nlin/0611035v1 (2006)Google Scholar
  5. 5.
    Bonabeau, E.: PNAS 99, 7280 (2002)Google Scholar
  6. 6.
    Carletti, T., Fanelli, D., Grolli, S., Guarino, A.: Europh. Lett. 74, 222–228 (2006)Google Scholar
  7. 7.
    Castellano, C., Fortunato, S., Loreto, V.: arXiv:physics/0710.3256Google Scholar
  8. 8.
    Castellano, C., Marsili, M., Vespignani, A.: Phys. Rev. Lett. 85, 3536 (2000)Google Scholar
  9. 9.
    Centola, D., González-Avella, J.C., Eguíluz, V.M., Miguel, M.S.: J. Conflict Resolut. 51, 2007 (2007)Google Scholar
  10. 10.
    Flache, A., Macy, M.W.: arXiv:physics/0604201v1 (2006)Google Scholar
  11. 11.
    Goldstone, R.L., Janssen, M.A.: TRENDS in Cognitive Sciences 9, 424 (2005)Google Scholar
  12. 12.
    González-Avella, J.C., Cosenza, M.G., Klemm, K., Eguíluz, V.M., Miguel, M.S.: J. Artif. Soc. Soc. Simul. 10, 9 (2007)Google Scholar
  13. 13.
    González-Avella, J.C., Cosenza, M.G., Tucci, K.: Phys. Rev. E 72, 065,102(R) (2005)Google Scholar
  14. 14.
    González-Avella, J.C., Eguíluz, V.M., Cosenza, M.G., Klemm, K., Herrera, J.L., Miguel, M.S.: Phys. Rev. E 73, 046, 119 (2006)Google Scholar
  15. 15.
    Grimm, V., Railsback, S.F.: Individual-based Modeling and Ecology. University Press, Princeton (2005)zbMATHGoogle Scholar
  16. 16.
    Helbing, D.: Quantitative Sociodynamics. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  17. 17.
    Jacobmeier, D.: Int. Journ. Modern Phys. C 4, 633 (2005)Google Scholar
  18. 18.
    Klemm, K., Eguíluz, V.M., Toral, R., Miguel, M.S.: Phys. Rev. E 67, 026, 120 (2003)Google Scholar
  19. 19.
    Klemm, K., Eguíluz, V.M., Toral, R., Miguel, M.S.: Phys. Rev. E 67, 045, 101(R) (2003)Google Scholar
  20. 20.
    Laughlin, R.: A Different Universe: Reinventing Physics from the Bottom Down. Basic Books, New York (2006)Google Scholar
  21. 21.
    Mazzitello, K.I., Candia, J., Dossetti, V.: Int. J. Mod. Phys. C 18, 1475 (2007)Google Scholar
  22. 22.
    Sanctis, L.D., Galla, T.: arXiv:0707.3428v1 (2007)Google Scholar
  23. 23.
    Shibanai, Y., Yasuno, S., Ishiguro, I.: J. Conflict Resolution 45, 80 (2001)Google Scholar
  24. 24.
    Toral, R., Tessone, C.J.: arXiv:physics/0607252v1 (2006)Google Scholar
  25. 25.
    Vázquez, F., Redner, S.: EPL 78, 18, 002 (2007)Google Scholar
  26. 26.
    Weidlich, W.: Sociodynamics. Dover Publications, New York (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Arezky H. Rodríguez
    • 1
  • M. del Castillo-Mussot
    • 2
  • G. J. Vázquez
    • 2
  1. 1.Academia de MatemáticasUniversidad Autónoma de la Ciudad de MéxicoMexico CityMexico
  2. 2.Departamento de Estado Sólido, Instituto de FísicaUniversidad Nacional Autónoma de México (UNAM)San ÁngelMexico

Personalised recommendations