Experiencing Self-adaptive MAS for Real-Time Decision Support Systems

  • Jean-Pierre Georgé
  • Sylvain Peyruqueou
  • Christine Régis
  • Pierre Glize
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 55)


Hydrological phenomena are often very dynamic and depend on numerous criteria. The STAFF software is an adaptive model for flood forecast based on self-organizing multiagent systems. It is operational since 2002 in the Midi-Pyrenees region in France. The aim of this paper is to show the relevance of our approach to model complex natural systems by focusing on the results, architecture and self-organization mechanisms of a real world application. The main idea is to let the artificial system self-adapt towards the adequate model by confronting it to real data, thus ensuring that the resulting model represents reality. Moreover, since the MAS is constantly adapting, we obtain a dynamic and autonomous system that can take into account any future dynamics (strong perturbations, sensor breakdowns...) and able to provide decision-makers with usable information anytime.


Cooperative agents self-organisation emergence adaptation flood forecast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelrod, R.: The Evolution of Cooperation. Basic Books, New York (1984)Google Scholar
  2. 2.
    Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: A methodology for adaptive multi-agent systems engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Dupouyet, J.P., Vidal, J.J.: La modernisation de l’annonce et de la prévision des crues dans le bassin de la Garonne. SHMA – Direction Régionale de l’Environnement Midi-Pyrénées (1991)Google Scholar
  4. 4.
    Georgé, J.-P., Gleizes, M.-P., Glize, P., Régis, C.: Real-time Simulation for Flood Forecast: an Adaptive Multi-Agent System STAFF. In: Proceedings of the AISB 2003 symposium on Adaptive Agents and Multi-Agent Systems, University of Wales, Aberystwyth, April 7-11 (2003)Google Scholar
  5. 5.
    Georgé, J.-P., Edmonds, B., Glize, P.: Making Self-Organising Adaptive Multiagent Systems Work. In: Bergenti, F., Gleizes, M.-P., Zombonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems, pp. 319–338. Kluwer, Dordrecht (2004)Google Scholar
  6. 6.
    Gleizes, M.P., Camps, V., Glize, P.: A theory of emergent computation based on cooperative self-organization for adaptive artificial systems. In: Fourth European Congress on Systemic (1999),
  7. 7.
    Gleizes, M.P., Camps, V., Georgé, J.-P., Capera, D.: Engineering systems which generate emergent functionalities. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS, vol. 5049, pp. 58–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When agents emerge from agents: Introducing multi-scale viewpoints in multi-agent simulations. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 183–198. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean-Pierre Georgé
    • 1
  • Sylvain Peyruqueou
    • 2
  • Christine Régis
    • 1
  • Pierre Glize
    • 1
  1. 1.IRIT - Institut de Recherche en Informatique de ToulouseToulouse Cedex 4France
  2. 2.UPETEC – Emergence Technologies for Unsolved Problems, Parc Technologique du CanalRamonville Saint AgneFrance

Personalised recommendations