Advertisement

A Multi-Agent System Approach for Algorithm Parameter Tuning

  • R. Pavón
  • D. Glez-Peña
  • R. Laza
  • F. Díaz
  • M. V. Luzón
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 55)

Abstract

The parameter setting of an algorithm that will result in optimal performance is a tedious task for users who spend a lot of time fine-tuning algorithms for their specific problem domains. This paper presents a multi-agent tuning system as a framework to set the parameters of a given algorithm which solves a specific problem. Besides, such a configuration is generated taking into account the current problem instance to be solved. We empirically evaluate our multi-agent tuning system using the configuration of a genetic algorithm applied to the root identification problem. The experimental results show the validity of the proposed model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akaike, H.: A new look at statistical model identification. IEEE Transactions on Automatic Control 19, 716–723 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barreiro, E.: Modelización y optimización de algoritmos genéticos para la selección de la solución deseada en resolución construtiva de restricciones geométricas. PhD thesis, Dpto. de Informática. Universidade de Vigo., Marzo (2006)Google Scholar
  3. 3.
    Bouma, W., Fudos, I., Hoffmann, C., Cai, J., Paige, R.: Geometric constraint solver. Computer-Aided Design 27(6), 487–501 (1995)zbMATHCrossRefGoogle Scholar
  4. 4.
    DeGroot, M.H.: Optimal Statistical Decisions. McGraw-Hill, New York (1970)zbMATHGoogle Scholar
  5. 5.
    Essert-Villard, C., Schreck, P., Dufourd, J.F.: Sketch-based pruning of a solution space within a formal geometric constraint solver. Artificial Intelligence Journal 1(124), 139–159 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Document Title Fipa. Fipa interaction protocol library specification, http://www.fipa.org/specs/fipa00025/
  7. 7.
  8. 8.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  9. 9.
    Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, Washington (1995)Google Scholar
  10. 10.
    Hoffmann, C.M., Joan-Arinyo, R.: A brief on constraint solving. Computer-Aided Design and Applications 2(5), 655–663 (2005)Google Scholar
  11. 11.
    Jeffreys, H.: Theory of Probability. Oxford University Press, Oxford (1983)zbMATHGoogle Scholar
  12. 12.
    Jensen, F.V.: An Introduction to Bayesian Networks. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Kohavi, R., John, G.: Automatic parameter selection by minimizing estimated error. In: Prieditis, A., Russell, S. (eds.) Proceedings of the 12th International Conference on Machine Learning, Lake Tahoe, CA, pp. 304–312. Morgan Kaufmann, San Francisco (1995)Google Scholar
  14. 14.
    Luzón, M.V.: Resolución de Restricciones geométricas. Selección de la Solución Deseada. PhD thesis, Dpto. de Informática. Universidade de Vigo., Septiembre (2001)Google Scholar
  15. 15.
    Nilsson, D.: An efficient algorithm for finding the m most probable configurations in bayesian networks. Statistics and Computing 8(2), 159–173 (1998)CrossRefGoogle Scholar
  16. 16.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1998)Google Scholar
  17. 17.
    Sagrado, J.D.: Fusión topológica y cuantitativa de redes causales. Universidad de Almería. Servicio de publicaciones (2000)Google Scholar
  18. 18.
    Schwefel, H.P.: Evolution and Optimum Seeking. John Wiley and Sons, Chichester (1995)Google Scholar
  19. 19.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search. Lectures Notes in Statistics, vol. 81. Springer, New York (1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • R. Pavón
    • 1
  • D. Glez-Peña
    • 1
  • R. Laza
    • 1
  • F. Díaz
    • 2
  • M. V. Luzón
    • 3
  1. 1.Computer ScienceUniversity of VigoSpain
  2. 2.Computer ScienceUniversity of ValladolidSpain
  3. 3.Computer ScienceUniversity of GranadaSpain

Personalised recommendations