Advertisement

How to Avoid Biases in Reactive Simulations

  • Yoann Kubera
  • Philippe Mathieu
  • Sébastien Picault
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 55)

Abstract

In order to ensure simulations reproducibility, particular attention must be payed to the specification of its model. This requires adequate design methodologies, that enlightens modelers on possible implementation ambiguities – and biases – their model might have. Yet, because of not adapted knowledge representation, current reactive simulation design methodologies lack specifications concerning interaction selection, especially in stochastic behaviors. Thanks to the interaction-oriented methodology IODA – which knowledge representation is fit to handle such problems – this paper provides simple guidelines to describe interaction selection. These guidelines use a subsumption like-structure, and focus the design of interaction selection on two points : how the selection takes place – for instance first select the interaction, and then select the partner of the interaction, or first a partner and then an interaction – and the nature of each selection – for instance at random, or with a utility function. This provides a valuable communication support between modelers and computer scientists, that makes the interpretation of the model and its implementation clearer, and the identification of ambiguities and biases easier.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernon, C., Camps, V., Gleizes, M.-P., Picard, G.: Engineering Adaptive Multi-Agent Systems: The ADELFE Methodology. In: Agent-Oriented Methodologies (2005)Google Scholar
  2. 2.
    Briot, J.-P., Meurisse, T.: An experience in using components to construct and compose agent behaviors for agent-based simulation. In: Proceedings of IMSM 2007 (2007)Google Scholar
  3. 3.
    Brooks, R.A.: A robust layered control system for a mobile robot. IEEE journal of robotics and automation 2(1) (1986)Google Scholar
  4. 4.
    Demazeau, Y.: From interactions to collective behaviour in agent-based systems. In: Proceedings of ECCS 1995, Saint-Malo, France (1995)Google Scholar
  5. 5.
    Epstein, J., Axtell, R.: Growing Artificial Societies. Brookings Institution Press, Washington (1996)Google Scholar
  6. 6.
    Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: Proceedings of AAAI 1987, Seattle, WA (1987)Google Scholar
  7. 7.
    Kubera, Y., Mathieu, P., Picault, S.: Biases in multi-agent based simulations : An experimental study. In: Proceedings of ESAW 2008, St Etienne, France (2008)Google Scholar
  8. 8.
    Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations : From theory to implementation. In: Proceedings of ECAI 2008, Patras Greece (2008)Google Scholar
  9. 9.
    Kubera, Y., Mathieu, P., Picault, S.: Interaction selection ambiguities in multi-agent systems. In: Proceedings of IAT 2008, Sydney, Australia (2008)Google Scholar
  10. 10.
    Michaelis, L., Menten, M.L.: Die kinetik der invertinwirkung. Biochemische Zeitschrift 49 (1913)Google Scholar
  11. 11.
    Müller, J.P., Pischel, M.: Modelling interacting agents in dynamic environments. In: Proceedings of ECAI 1994, Amsterdam, The Netherlands (1994)Google Scholar
  12. 12.
    Nilsson, N.J.: Teleo-reactive programs for agent control. Journal of Artificial Intelligence Research 1 (1994)Google Scholar
  13. 13.
    Norman, D.A.: The Psychology of Everyday Things. Basic Books (1988)Google Scholar
  14. 14.
    Ricordel, P.-M., Demazeau, Y.: Volcano, a vowels-oriented multi-agent platform. In: Dunin-Keplicz, B., Nawarecki, E. (eds.) CEEMAS 2001. LNCS, vol. 2296, p. 253. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    van Langevelde, I., Philipsen, A., Treur, J.: Formal specification of compositional architectures. In: Proceedings of ECAI 1992 (1992)Google Scholar
  16. 16.
    Weyns, D., Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent systems: State-of-the-art and research challenges. In: Environments for multiagent systems, New York, NY, USA (2004)Google Scholar
  17. 17.
    Wilensky, U.: Netlogo. Center for Connected Learning and Computer-Based Modeling. Northwestern University, Evanston, IL (1999), http://ccl.northwestern.edu/netlogo

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yoann Kubera
    • 1
  • Philippe Mathieu
    • 1
  • Sébastien Picault
    • 1
  1. 1.Laboratoire d’informatique Fondamentale de LilleUniversity of LilleFrance

Personalised recommendations